Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Phys Rev E ; 110(1-1): 014132, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39160973

RESUMEN

The fluctuation of the quantum Otto engine has recently received a lot of attention, while applying the many body with a long-range interaction to a quantum heat engine may enhance our ability of controlling it. Using the two-point measurement and its generalization, we explore the fluctuation theorem of work and heat in a single stroke as well as in a cycle. We discover that the fluctuations of work in a cycle as well as fluctuations of heat in a single stroke or cycle can be connected to the fluctuation of work in a single stroke. Then we numerically investigate the effect of a long-range interaction on these fluctuation theorems, and our result shows that the fluctuation can be improved by manipulating the long-range interaction.

2.
Small ; : e2404477, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155434

RESUMEN

Cyclohexanone oxime is an important intermediate in the chemical industry, especially for the manufacture of nylon-6. The traditional cyclohexanone oxime production strongly relies on cyclohexanone-hydroxylamine and cyclohexanone ammoxidation processes, which require harsh reaction conditions and consume considerable amounts of energy. Herein, direct electrosynthesis of cyclohexanone oxime is reported from environmental pollutants nitrite and cyclohexanone with almost 100% yield by using low-cost Cu2Se nanosheets as electrocatalysts. Combination of in situ Fourier transform infrared spectroscopy and theoretical calculations verifies that the p-d orbital hybridization between Cu and Se elements could synergistically optimize the surface electronic structure and enable improved adsorption and formation of the key active N intermediate NH2OH*, thereby enhancing cyclohexanone/nitrite-to-cyclohexanone oxime conversion over the Cu2Se nanosheets. Based on these, an efficient asymmetric co-electrolysis system is further demonstrated by coupling cyclohexanone/nitrite-to-cyclohexanone oxime conversion with the upcycling of polyethylene terephthalate plastics, achieveing energy-saving simultaneously production of value-added products (cyclohexanone oxime and glycolic acid).

3.
Front Pharmacol ; 15: 1399598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108760

RESUMEN

The liver, a complex parenchymal organ, possesses a distinctive microcirculatory system crucial for its physiological functions. An intricate interplay exists between hepatic microcirculatory disturbance and the manifestation of pathological features in diverse liver diseases. This review updates the main characteristics of hepatic microcirculatory disturbance, including hepatic sinusoidal capillarization, narrowing of sinusoidal space, portal hypertension, and pathological angiogenesis, as well as their formation mechanisms. It also summarized the detection methods for hepatic microcirculation. Simultaneously, we have also reviewed the characteristics of microcirculatory disturbance in diverse liver diseases such as acute liver failure, hepatic ischemia-reperfusion injury, viral hepatitis, non-alcoholic fatty liver disease, hepatic fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Finally, this review also summarizes the advancement in hepatic microcirculation attributed to traditional Chinese medicine (TCM) and its active metabolites, providing novel insights into the application of TCM in treating liver diseases.

4.
Front Cardiovasc Med ; 11: 1306159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091361

RESUMEN

Background: The risk factors of cardiovascular disease (CVD) in end-stage renal disease (ESRD) with hemodialysis remain not fully understood. In this study, we developed and validated a clinical-longitudinal model for predicting CVD in patients with hemodialysis, and employed Mendelian randomization to evaluate the causal 6study included 468 hemodialysis patients, and biochemical parameters were evaluated every three months. A generalized linear mixed (GLM) predictive model was applied to longitudinal clinical data. Calibration curves and area under the receiver operating characteristic curves (AUCs) were used to evaluate the performance of the model. Kaplan-Meier curves were applied to verify the effect of selected risk factors on the probability of CVD. Genome-wide association study (GWAS) data for CVD (n = 218,792,101,866 cases), end-stage renal disease (ESRD, n = 16,405, 326 cases), diabetes (n = 202,046, 9,889 cases), creatinine (n = 7,810), and uric acid (UA, n = 109,029) were obtained from the large-open GWAS project. The inverse-variance weighted MR was used as the main analysis to estimate the causal associations, and several sensitivity analyses were performed to assess pleiotropy and exclude variants with potential pleiotropic effects. Results: The AUCs of the GLM model was 0.93 (with accuracy rates of 93.9% and 93.1% for the training set and validation set, sensitivity of 0.95 and 0.94, specificity of 0.87 and 0.86). The final clinical-longitudinal model consisted of 5 risk factors, including age, diabetes, ipth, creatinine, and UA. Furthermore, the predicted CVD response also allowed for significant (p < 0.05) discrimination between the Kaplan-Meier curves of each age, diabetes, ipth, and creatinine subclassification. MR analysis indicated that diabetes had a causal role in risk of CVD (ß = 0.088, p < 0.0001) and ESRD (ß = 0.26, p = 0.007). In turn, ESRD was found to have a causal role in risk of diabetes (ß = 0.027, p = 0.013). Additionally, creatinine exhibited a causal role in the risk of ESRD (ß = 4.42, p = 0.01). Conclusions: The results showed that old age, diabetes, and low level of ipth, creatinine, and UA were important risk factors for CVD in hemodialysis patients, and diabetes played an important bridging role in the link between ESRD and CVD.

5.
Angew Chem Int Ed Engl ; : e202410442, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993065

RESUMEN

Renewable electricity driven electrosynthesis of cyclohexanone oxime (C6H11NO) from cyclohexanone (C6H10O) and nitrogen oxide (NOx) is a promising alternative to traditional environment-unfriendly industrial technologies for green synthesis of C6H11NO. Precisely controlling the reaction pathway of the C6H10O/NOx-involved electrochemical reductive coupling reaction is crucial for selectively producing C6H11NO, which is yet still challenging. Herein, we report a porous high-entropy alloy PdCuAgBiIn metallene (HEA-PdCuAgBiInene) to boost the electrosynthesis of C6H11NO from C6H10O and nitrite, achieving a high Faradaic efficiency (47.6%) and almost 100% yield under ambient conditions. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that unconventional orbital hybridization between d-block metals and p-block metals could regulate the local electronic structure of active sites and induce electron localization of electron-rich Pd sites, which tunes the active hydrogen supply and facilitates the generation and enrichment of key intermediates NH2OH* and C6H10O*, and efficiently promotes their C-N coupling to selectively produce C6H11NO.

6.
Small ; : e2404124, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016131

RESUMEN

Electrochemical upcycling of nitrate and polyester plastic into valuable products is an ideal solution to realize the resource utilization. Here, the co-production of ammonia (NH3) and glycolic acid (GA) via electrochemical upcycling of nitrate and polyethylene terephthalate (PET) plastics over mesoporous Pd3Au film on Ni foam (mPd3Au/NF), which is synthesized by micelle-assisted replacement method, is proposed. The mPd3Au/NF with well-developed mesoporous structure provides abundant active sites and facilitated transfer channels and strong electronic effect. As such, the mPd3Au/NF exhibits high Faraday efficiencies of 97.28% and 95.32% at 0.9 V for the formation of NH3 and GA, respectively. Theoretical results indicate that the synergistic effect of Pd and Au can optimize adsorption energy of key intermediates *NOH and *OCH2-CH2OH on active sites and increase bond energy of C─C band, thereby improving the activity and selectivity for the formation of NH3 and GA. This work proposes a promising strategy for the simultaneous conversation of nitrate and PET plastic into high-value NH3 and GA.

7.
Plant Cell Environ ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038946

RESUMEN

The improvement of performance and yield in both cultivar and species mixtures has been well established. Despite the clear benefits of crop mixtures to agriculture, identifying the critical mechanisms behind performance increases are largely lacking. We experimentally demonstrated that the benefits of rice cultivar mixtures were linked to relatedness-mediated intraspecific neighbour recognition and discrimination under both field and controlled conditions. We then tested biochemical mechanisms of responses in incubation experiments involving the addition of root exudates and a root-secreted signal, (-)-loliolide, followed by transcriptome analysis. We found that closely related cultivar mixtures increased grain yields by modifying root behaviour and accelerating flowering over distantly related mixtures. Importantly, these responses were accompanied by altered concentration of signalling (-)-loliolide that affected rice transcriptome profiling, directly regulating root growth and flowering gene expression. These findings suggest that beneficial crop combinations may be generated a-priori by manipulating neighbour genetic relatedness in rice cultivar mixtures and that root-secreted (-)-loliolide functions as a key mediator of genetic relatedness interactions. The ability of relatedness discrimination to regulate rice flowering and yield raises an intriguing possibility to increase crop production.

8.
Acta Biomater ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053815

RESUMEN

Near-infrared-II (NIR-II) photothermal therapy is emerging as a cutting-edge modality for tumor ablation due to its good biosafety, high penetration ability and spatiotemporal controllability. Despite efforts, establishing a link between cellular metabolic regulation and photothermal performance is still promising in synergistic cancer therapy. Herein, we developed a core-shell semiconducting polymer@metal-phenolic network (SP@GFP) nanomotor by assembling diphenol-terminated cisplatin prodrug ligand (cPt-DA) and iron (III) (Fe3+) through metal coordination on SP particles in the presence of GOx and DSPE-PEG-cRGD, for NIR-II-propelled self-propulsion and synergistic cancer therapy. Remotely driving the SP@GFP nanomotor with an NIR-II laser through a thermophoresis mechanism would allow for in-depth penetration and accumulation. The synergistic photothermal effect and continuous Fe2+-mediated ROS generation of SP@GFP nanomotor could activate photothermal, chemotherapeutic effects and ferroptosis pathway for cancer cells through reshaping cellular metabolic pathways (HSP and GPX4). By combining the concepts of chemotherapeutic prodrugs, catalytic ROS generation, photothermal response and cellular metabolic regulation, the NIR-II laser-controlled core-shell SP@GFP nanomotor displayed improved outcomes for enhanced cancer therapy through synergistic oxidative stress-photothermo modulation. STATEMENT OF SIGNIFICANCE.

9.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000053

RESUMEN

Sclerotinia sclerotiorum (Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor genes. Genome-wide identification of genes involved in QDR to Ss is yet to be conducted. In this study, we integrated several assays including genome-wide association study (GWAS), multi-omics co-localization, and machine learning prediction to identify, on a genome-wide scale, genes involved in the oilseed rape QDR to Ss. Employing GWAS and multi-omics co-localization, we identified seven resistance-associated loci (RALs) associated with oilseed rape resistance to Ss. Furthermore, we developed a machine learning algorithm and named it Integrative Multi-Omics Analysis and Machine Learning for Target Gene Prediction (iMAP), which integrates multi-omics data to rapidly predict disease resistance-related genes within a broad chromosomal region. Through iMAP based on the identified RALs, we revealed multiple calcium signaling genes related to the QDR to Ss. Population-level analysis of selective sweeps and haplotypes of variants confirmed the positive selection of the predicted calcium signaling genes during evolution. Overall, this study has developed an algorithm that integrates multi-omics data and machine learning methods, providing a powerful tool for predicting target genes associated with specific traits. Furthermore, it makes a basis for further understanding the role and mechanisms of calcium signaling genes in the QDR to Ss.


Asunto(s)
Ascomicetos , Brassica napus , Señalización del Calcio , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Aprendizaje Automático , Enfermedades de las Plantas , Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Brassica napus/genética , Brassica napus/microbiología , Brassica napus/inmunología , Señalización del Calcio/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Genómica/métodos , Multiómica
10.
J Orthop Surg Res ; 19(1): 335, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845012

RESUMEN

BACKGROUND: Existing studies have shown that computed tomography (CT) attenuation and skeletal muscle tissue are strongly associated with osteoporosis; however, few studies have examined whether vertebral HU values and the pectoral muscle index (PMI) measured at the level of the 4th thoracic vertebra (T4) are strongly associated with bone mineral density (BMD). In this study, we demonstrate that vertebral HU values and the PMI based on chest CT can be used to opportunistically screen for osteoporosis and reduce fracture risk through prompt treatment. METHODS: We retrospectively evaluated 1000 patients who underwent chest CT and DXA scans from August 2020-2022. The T4 HU value and PMI were obtained using manual chest CT measurements. The participants were classified into normal, osteopenia, and osteoporosis groups based on the results of dual-energy X-ray (DXA) absorptiometry. We compared the clinical baseline data, T4 HU value, and PMI between the three groups of patients and analyzed the correlation between the T4 HU value, PMI, and BMD to further evaluate the diagnostic efficacy of the T4 HU value and PMI for patients with low BMD and osteoporosis. RESULTS: The study ultimately enrolled 469 participants. The T4 HU value and PMI had a high screening capacity for both low BMD and osteoporosis. The combined diagnostic model-incorporating sex, age, BMI, T4 HU value, and PMI-demonstrated the best diagnostic efficacy, with areas under the receiver operating characteristic curve (AUC) of 0.887 and 0.892 for identifying low BMD and osteoporosis, respectively. CONCLUSIONS: The measurement of T4 HU value and PMI on chest CT can be used as an opportunistic screening tool for osteoporosis with excellent diagnostic efficacy. This approach allows the early prevention of osteoporotic fractures via the timely screening of individuals at high risk of osteoporosis without requiring additional radiation.


Asunto(s)
Absorciometría de Fotón , Densidad Ósea , Osteoporosis , Músculos Pectorales , Vértebras Torácicas , Tomografía Computarizada por Rayos X , Humanos , Femenino , Osteoporosis/diagnóstico por imagen , Masculino , Vértebras Torácicas/diagnóstico por imagen , Estudios Retrospectivos , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Anciano , Absorciometría de Fotón/métodos , Músculos Pectorales/diagnóstico por imagen , Tamizaje Masivo/métodos , Anciano de 80 o más Años , Radiografía Torácica/métodos , Adulto
11.
Macromol Rapid Commun ; : e2400350, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895813

RESUMEN

Antimicrobial resistance is a global healthcare challenge that urgently needs the development of new therapeutic agents. Antimicrobial peptides and mimics thereof are promising candidates but mostly suffer from inherent toxicity issues due to the non-selective binding of cationic groups with mammalian cells. To overcome this toxicity issue, this work herein reports the synthesis of a smart antimicrobial dendron with masked cationic groups (Gal-Dendron) that could be uncaged in the presence of ß-galactosidase enzyme to form the activated Enz-Dendron and confer antimicrobial activity. Enz-Dendron show bacteriostatic activity toward Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus) bacteria with minimum inhibitory concentration values of 96 µm and exerted its antimicrobial mechanism via a membrane disruption pathway, as indicated by inner and outer membrane permeabilization assays. Crucially, toxicity studies confirmed that the masked prodrug Gal-Dendron exhibited low hemolysis and is at least 2.4 times less toxic than the uncaged cationic Enz-Dendron, thus demonstrating the advantage of masking the cationic groups with responsive immolative linkers to overcome toxicity and selectivity issues. Overall, this study highlights the potential of designing new membrane-disruptive antimicrobial agents that are more biocompatible via the amine uncaging strategy.

12.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891858

RESUMEN

Plant glutamate receptor-like channels (GLRs) are homologs of animal ionotropic glutamate receptors. GLRs are critical in various plant biological functions, yet their genomic features and functions in disease resistance remain largely unknown in many crop species. Here, we report the results on a thorough genome-wide study of the GLR family in oilseed rape (Brassica napus) and their role in resistance to the fungal pathogen Sclerotinia sclerotiorum. A total of 61 GLRs were identified in oilseed rape. They comprised three groups, as in Arabidopsis thaliana. Detailed computational analyses, including prediction of domain and motifs, cellular localization, cis-acting elements, PTM sites, and amino acid ligands and their binding pockets in BnGLR proteins, unveiled a set of group-specific characteristics of the BnGLR family, which included chromosomal distribution, motif composition, intron number and size, and methylation sites. Functional dissection employing virus-induced gene silencing of BnGLRs in oilseed rape and Arabidopsis mutants of BnGLR homologs demonstrated that BnGLR35/AtGLR2.5 positively, while BnGLR12/AtGLR1.2 and BnGLR53/AtGLR3.2 negatively, regulated plant resistance to S. sclerotiorum, indicating that GLR genes were differentially involved in this resistance. Our findings reveal the complex involvement of GLRs in B. napus resistance to S. sclerotiorum and provide clues for further functional characterization of BnGLRs.


Asunto(s)
Ascomicetos , Brassica napus , Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Receptores de Glutamato , Brassica napus/genética , Brassica napus/microbiología , Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/microbiología , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Genoma de Planta
14.
Acta Psychol (Amst) ; 248: 104332, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861868

RESUMEN

Since the social cognitive model of well-being in academic\work settings was proposed, more and more studies have supported its validity. Nevertheless, most studies failed to test the temporal precedence of its core variables related to individual career development. Thus, we aimed to test this model among 1512 Chinese college students with a longitudinal perspective. They completed the Career-related Parental Support Inventory, Career Exploration and Decision Self-Efficacy-Brief Decision Scale, Career Commitment Making Scale, and Multiple Happiness Questionnaire three times being a four-month interval. The result indicated that there were more positive predicting associations between career-related parental support, career decision self-efficacy (CDSE), career commitment making, and well-being. Moreover, the longitudinal mediation analyses indicated that T1 career-related parental support was linked to T3 well-being via T2 career commitment making, and that T1 CDSE was linked to T3 well-being via T2 career commitment making. The implications of these findings for further research, practices, and policy-making were discussed.


Asunto(s)
Estudiantes , Humanos , Masculino , Femenino , Estudiantes/psicología , Estudios Longitudinales , Adulto Joven , China , Cognición Social , Universidades , Autoeficacia , Selección de Profesión , Adulto , Satisfacción Personal , Modelos Psicológicos , Encuestas y Cuestionarios , Adolescente , Apoyo Social
15.
Endocrine ; 85(3): 1100-1103, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38922479

RESUMEN

Fracture risk in type 2 diabetes (T2D) patients is paradoxically increased despite no decrease in areal bone mineral density (BMD). This phenomenon, known as the "diabetic bone paradox", has been attributed to various factors including alterations in bone microarchitecture and composition, hyperinsulinemia and hyperglycemia, advanced glycation end products (AGEs), and comorbidities associated with T2D. Zhao et al. recently investigated the relationship between T2D and fracture risk using both genetic and phenotypic datasets. Their findings suggest that genetically predicted T2D is associated with higher BMD and lower fracture risk, indicating that the bone paradox is not observed when confounding factors are controlled using Mendelian randomization (MR) analysis. However, in prospective phenotypic analysis, T2D remained associated with higher BMD and higher fracture risk, even after adjusting for confounding factors. Stratified analysis revealed that the bone paradox may disappear when T2D-related risk factors are eliminated. The study also highlighted the role of obesity in the relationship between T2D and fracture risk, with BMI mediating a significant portion of the protective effect. Overall, managing T2D-related risk factors may be crucial in preventing fracture risk in T2D patients.


Asunto(s)
Densidad Ósea , Diabetes Mellitus Tipo 2 , Fracturas Óseas , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Fracturas Óseas/epidemiología , Fracturas Óseas/etiología , Factores de Riesgo
18.
Chemosphere ; 360: 142325, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754489

RESUMEN

Enhancing the kinetic performance of thick electrodes is essential for improving the efficiency of lithium extraction processes. Biochar, known for its affordability and unique three-dimensional (3D) structure, is utilized across various applications. In this study, we developed a biochar-based, 3D-conductive network thick electrode (∼20 mg cm-2) by in-situ deposition of LiFePO4 (LFP) onto watermelon peel biomass (WB). Utilizing Density Functional Theory (DFT) calculations complemented by experimental data, we confirmed that this The thick electrode exhibits outstanding kinetic properties and a high capacity for lithium intercalation in brines, even in environments where the Magnesia-lithium ratios are significantly high. The electrode showed an impressive intercalation capacity of 30.67 mg g-1 within 10 min in a pure lithium solution. It also maintained high intercalation performance (31.17 mg g-1) in simulated brines with high Magnesia-lithium ratios. Moreover, in actual brine, it demonstrated a significant extraction capacity (23.87 mg g-1), effectively lowering the Magnesia-lithium ratio from 65 to 0.50. This breakthrough in high-conductivity thick electrode design offers new perspectives for lithium extraction technologies.


Asunto(s)
Carbón Orgánico , Electrodos , Litio , Litio/química , Litio/aislamiento & purificación , Carbón Orgánico/química , Lagos/química , Magnesio/química , Citrullus/química , Sales (Química)/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Cinética , Hierro , Fosfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA