Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Biomech (Bristol, Avon) ; 104: 105943, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37040676

RESUMEN

BACKGROUND: Hybrid fixators with quite different joint design concepts have been widely to suppress adjacent segment degeneration problems. The kinematic and kinetic responses of the adjacent and transition segments and contact behaviors at the bone-screw interfaces served as the objective of this study. METHODS: The moderately degenerated L4/L5 and mildly degenerative L3/L4 segments were respectively immobilized by a static fixator and further bridged by the rod-rod (Isobar) and screw-spacer (Dynesys) fixator. The joint stiffness and mobility of the rod-rod system and the cable pretension of the screw-spacer system were systematically varied. FINDINGS: The flexion of the screw-spacer system provided higher mobility to the transition segment, reducing adjacent-segment problems. The cable pretension had a minor effect on the construct behavior. However, due to limited joint mobility, the rod-rod system showed higher constraints to the transition segment and induced more adjacent-segment compensations. The increased mobility of the rod-rod joint caused it to behave as a more dynamic fixator that increased adjacent-segment compensations at the transition segment. Comparatively, increasing the joint mobility showed more significant effects on the construct behaviors than decreasing the joint stiffness. Furthermore, increased constraint by the rod-rod joint induced higher stress and risk of loosening at the bone-screw interfaces INTERPRETATION: If the protection of the transition segment is the major concern, the rod-rod system can be used to constrain the intervertebral motion and share the higher loads through the fixator. Otherwise, the screw-spacer system is recommended in situations where higher loads onto the transition disc are allowable.


Asunto(s)
Vértebras Lumbares , Fusión Vertebral , Humanos , Vértebras Lumbares/cirugía , Estrés Mecánico , Tornillos Óseos , Región Lumbosacra , Fenómenos Biomecánicos/fisiología , Rango del Movimiento Articular/fisiología , Fijadores Internos
2.
BMC Musculoskelet Disord ; 21(1): 463, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664920

RESUMEN

BACKGROUND: Two types of screw trajectories are commonly used in lumbar surgery. Both traditional trajectory (TT) and cortical bone trajectory (CBT) were shown to provide equivalent pull-out strengths of a screw. CBT utilizing a laterally-directed trajectory engaging only cortical bone in the pedicle is widely used in minimal invasive spine posterior fusion surgery. It has been demonstrated that CBT exerts a lower likelihood of violating the facet joint, and superior pull-out strength than the TT screws, especially in osteoporotic vertebral body. No design yet to apply this trajectory to dynamic fixation. To evaluate kinetic and kinematic behavior in both static and dynamic CBT fixation a finite element study was designed. This study aimed to simulate the biomechanics of CBT-based dynamic system for an evaluation of CBT dynamization. METHODS: A validated nonlinearly lumbosacral finite-element model was used to simulate four variations of screw fixation. Responses of both implant (screw stress) and tissues (disc motion, disc stress, and facet force) at the upper adjacent (L3-L4) and fixed (L4-L5) segments were used as the evaluation indices. Flexion, extension, bending, and rotation of both TT and CBT screws were simulated in this study for comparison. RESULTS: The results showed that the TT static was the most effective stabilizer to the L4-L5 segment, followed by CBT static, TT dynamic, and the CBT dynamic, which was the least effective. Dynamization of the TT and CBT fixators decreased stability of the fixed segment and alleviate adjacent segment stress compensation. The 3.5-mm diameter CBT screw deteriorated stress distribution and rendered it vulnerable to bone-screw loosening and fatigue cracking. CONCLUSIONS: Modeling the effects of TT and CBT fixation in a full lumbosacral model suggest that dynamic TT provide slightly superior stability compared with dynamic CBT especially in bending and rotation. In dynamic CBT design, large diameter screws might avoid issues with loosening and cracking.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Fenómenos Biomecánicos , Hueso Cortical/diagnóstico por imagen , Hueso Cortical/cirugía , Análisis de Elementos Finitos , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Región Lumbosacra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...