Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Oncol ; 47: 102029, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906066

RESUMEN

Radiation-induced lung injury (RILI) is a severe complication arising from thoracic tumor radiotherapy, which constrains the possibility of increasing radiation dosage. Current RILI therapies provide only limited relief and may result in undesirable side effects. Therefore, there is an urgent demand for effective and low-toxicity treatments for RILI. Macrophages play a pivotal role in RILI, promoting inflammation in the initial stages and facilitating fibrosis in the later stages. Sodium clodronate, a bisphosphonate, can induce macrophage apoptosis when encapsulated in liposomes. In this study, we explored the potential of liposomal sodium clodronate (LC) as a specific agent for depleting macrophages to alleviate acute RILI. We assessed the impact of LC on macrophage consumption both in vitro and in vivo. In a mouse model of acute RILI, LC treatment group led to a reduction in alveolar macrophage counts, mitigated lung injury severity, and lowered levels of pro-inflammatory cytokines in both plasma and bronchoalveolar lavage fluid. Additionally, we further elucidated the specific effects and mechanism of LC on macrophages in vitro. Alveolar macrophages MHS cells were subjected to varying concentrations of LC (0, 50, 100, 200 µg/ml), and the results demonstrated its dose-dependent inhibition of cell proliferation and induction of apoptosis. Moreover, LC decreased the secretion of pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α. Conditioned media from LC-treated macrophages protected alveolar epithelial cells MLE-12 from radiation-induced damage, as demonstrated by reduced apoptosis and DNA damage. These findings imply that LC-mediated macrophage depletion may present a promising therapeutic strategy for alleviating radiation-induced lung injury.

2.
BMC Pulm Med ; 23(1): 59, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755257

RESUMEN

OBJECTIVES: Emerging evidence have demonstrated that oligometastatic non-small cell lung cancer (NSCLC) can achieve clinical benefit from local consolidative therapy. Bone oligometastasis is common in advanced lung cancer, but little is known about its molecular features. The purpose of our study aimed to investigate the genomic landscape bone oligometastatic NSCLC. METHODS: We collected paired blood and tissue samples from 31 bone oligometastatic NSCLC patients to make a comprehensive analysis of mutations by performing next-generation sequencing. RESULTS: A total of 186 genomic mutations were detected from 105 distinct cancer-relevant genes, with a median number of 6 alterations per tumor. The most frequently mutated genes were EGFR (58%) and TP53 (55%), followed by KRAS (16%), CDKN2A (13%) and MET (13%). The signatures related to smoking, aging, homologous recombination deficiency and APOBEC were identified as the most important mutational processes in bone oligometastasis. The median tumor mutation burden was 4.4 mutations/Mb. Altogether, genetic alterations of bone oligometastasis are highly targetable that 74.19% of patients had at least one actionable alteration that was recommended for targeted therapy based on the OncoKB evidence. Of these patients, 16.13% had two actionable alterations that could potentially benefit from a different combination of targeted drugs to achieve better outcomes. CONCLUSION: Our research comprehensively elucidates the genomic features of bone oligometastatic NSCLC patients, which may optimize individualized cancer treatment in the era of precision medicine.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Genómica , Mutación , Biomarcadores de Tumor/genética
3.
Cancer Res Treat ; 55(3): 814-831, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36634615

RESUMEN

PURPOSE: Oligometastatic non-small cell lung cancer (NSCLC) patients have been increasingly regarded as a distinct group that could benefit from local treatment to achieve a better clinical outcome. However, current definitions of oligometastasis are solely numerical, which are imprecise because of ignoring the biological heterogeneity caused by genomic characteristics. Our study aimed to profile the molecular alterations of oligometastatic NSCLC and elucidate its potential difference from polymetastasis. Materials and Methods: We performed next-generation sequencing to analyze tumors and paired peripheral blood from 77 oligometastatic and 21 polymetastatic NSCLC patients to reveal their genomic characteristics and assess the genetic heterogeneity. RESULTS: We found ERBB2, ALK, MLL4, PIK3CB, and TOP2A were mutated at a significantly lower frequency in oligometastasis compared with polymetastasis. EGFR and KEAP1 alterations were mutually exclusive in oligometastatic group. More importantly, oligometastasis has a unique significant enrichment of apoptosis signaling pathway. In contrast to polymetastasis, a highly enriched COSMIC signature 4 and a special mutational process, COSMIC signature 14, were observed in the oligometastatic cohort. According to OncoKB database, 74.03% of oligometastatic NSCLC patients harbored at least one actionable alteration. The median tumor mutation burden of oligometastasis was 5.00 mutations/Mb, which was significantly associated with smoking, DNA damage repair genes, TP53 mutation, SMARCA4 mutation, LRP1B mutation, ABL1 mutation. CONCLUSION: Our results shall help redefine oligometastasis beyond simple lesion enumeration that will ultimately improve the selection of patients with real oligometastatic state and optimize personalized cancer therapy for oligometastatic NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/uso terapéutico , Mutación , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
4.
Immunology ; 168(2): 320-330, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36151890

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the leading causes of death worldwide. Brain metastases are a common complication of a wide range of human malignancies, particularly lung adenocarcinoma (LUAD). Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has been linked to several human malignancies and has been shown to promote LUAD tumorigenesis. However, its function in the tumour immune microenvironment (TIME) remains largely unexplored, especially in complex brain tissue environments. In this study, BDNF was found to be particularly increased in patients with advanced tumour stage, lymphatic metastasis, and distant metastasis, indicating a correlation with LUAD progression. We characterized the prognostic value of BDNF and defined BDNF as an unfavourable prognostic indicator through a common driver gene-independent mechanism in LUAD. Furthermore, patients with increased BDNF levels in primary LUAD might have a higher risk of developing brain metastasis (BM), and central nervous system (CNS) metastasis showed an elevated expression of BDNF compared to their matched primary lesions. Additionally, we investigated the interaction between BDNF and infiltrating immune cells in both primary lesions and paired BM using multiplex immunostaining. The results showed that BDNF might drive an immunosuppressive tumour microenvironment (TME) by re-education of tumour-associated macrophages (TAMs) toward a pro-tumorigenic M2 phenotype, particularly in BM. Our findings demonstrate that BDNF serves as an independent potential prognostic marker and correlates with BM in LUAD. As it is closely related to TAM polarization, BDNF may be a promising immune-related biomarker and molecular target in patients with LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Factor Neurotrófico Derivado del Encéfalo , Pronóstico , Carcinogénesis , Microambiente Tumoral
5.
Circ Res ; 131(9): 768-787, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36134578

RESUMEN

RATIONALE: Vascular smooth muscle cells (VSMCs) phenotype switch from contractile to proliferative phenotype is a pathological hallmark in various cardiovascular diseases. Recently, a subset of long noncoding RNAs was identified to produce functional polypeptides. However, the functional impact and regulatory mechanisms of long noncoding RNAs in VSMCs phenotype switching remain to be fully elucidated. OBJECTIVES: To illustrate the biological function and mechanism of a VSMC-enriched long noncoding RNA and its encoded peptide in VSMC phenotype switching and vascular remodeling. RESULTS: We identified a VSMC-enriched transcript encoded by a previously uncharacterized gene, which we called phenotype switching regulator (PSR), which was markedly upregulated during vascular remodeling. Although PSR was annotated as a long noncoding RNA, we demonstrated that the lncPSR (PSR transcript) also encoded a protein, which we named arteridin. In VSMCs, both arteridin and lncPSR were necessary and sufficient to induce phenotype switching. Mechanistically, arteridin and lncPSR regulate downstream genes by directly interacting with a transcription factor YBX1 (Y-box binding protein 1) and modulating its nuclear translocation and chromatin targeting. Intriguingly, the PSR transcription was also robustly induced by arteridin. More importantly, the loss of PSR gene or arteridin protein significantly attenuated the vascular remodeling induced by carotid arterial injury. In addition, VSMC-specific inhibition of lncPSR using adeno-associated virus attenuated Ang II (angiotensin II)-induced hypertensive vascular remodeling. CONCLUSIONS: PSR is a VSMC-enriched gene, and its transcript IncPSR and encoded protein (arteridin) coordinately regulate transcriptional reprogramming through a shared interacting partner, YBX1. This is a previously uncharacterized regulatory circuit in VSMC phenotype switching during vascular remodeling, with lncPSR/arteridin as potential therapeutic targets for the treatment of VSMC phenotype switching-related vascular remodeling.


Asunto(s)
ARN Largo no Codificante , Angiotensina II/metabolismo , Proliferación Celular/genética , Células Cultivadas , Cromatina/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Remodelación Vascular
6.
Circulation ; 146(14): 1082-1095, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36004643

RESUMEN

BACKGROUND: Adverse environmental exposure during the prenatal period can lead to diseases in the offspring, including hypertension. Whether or not the hypertensive phenotype can be transgenerationally transmitted is not known. METHODS: Pregnant Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) on gestation days 6, 8, 10, and 12 to generate the prenatal LPS exposure model. Blood pressure was monitored by both telemetry and tail-cuff method. RNA sequencing was performed to analyze transcriptome alteration in the kidney of the third generation. Tempol and spironolactone were used to test the potential preventative and therapeutic effect of targeting reactive oxygen species and mineralocorticoid receptor signaling, respectively. Molecular biological experiments were performed to illustrate the mechanism of epigenetic and transcription regulation. RESULTS: Prenatal LPS exposure can impair the ability to excrete a salt load and induce hypertension from the first to the third generations, with the fourth and fifth generations, inducing salt-sensitive hypertension. Compared with control pups, the transcriptome in the kidney of the hypertensive third-generation prenatal LPS-exposed offspring have upregulation of the Ras-related C3 botulinum toxin substrate 1 (Rac1) gene and activation of mineralocorticoid receptor signaling. Furthermore, we found that LPS exposure during pregnancy triggered oxidative stress that upregulated KDM3B (histone lysine demethylase 3B) in the oocytes of first-generation female rats, leading to an inheritable low level of H3K9me2 (histone H3 lysine 9 dimethylation), resulting in the transgenerational upregulation of Rac1. Based on these findings, we treated the LPS-exposed pregnant rats with the reactive oxygen species scavenger, tempol, which successfully prevented hypertension in the first-generation offspring and the transgenerational inheritance of hypertension. CONCLUSIONS: These findings show that adverse prenatal exposure induces transgenerational hypertension through an epigenetic-regulated mechanism and identify potentially preventive and therapeutic strategies for hypertension.


Asunto(s)
Hipertensión , Efectos Tardíos de la Exposición Prenatal , Animales , Óxidos N-Cíclicos , Femenino , Histona Demetilasas , Histonas , Hipertensión/inducido químicamente , Hipertensión/genética , Histona Demetilasas con Dominio de Jumonji , Lipopolisacáridos/toxicidad , Lisina , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/etiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Receptores de Mineralocorticoides/genética , Marcadores de Spin , Espironolactona , Proteína de Unión al GTP rac1/genética
7.
EBioMedicine ; 82: 104139, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35810562

RESUMEN

BACKGROUND: While the adult mammalian heart undergoes only modest renewal through cardiomyocyte proliferation, boosting this process is considered a promising therapeutic strategy to repair cardiac injury. This study explored the role and mechanism of dual-specificity tyrosine regulated kinase 1A (DYRK1A) in regulating cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction (MI). METHODS: DYRK1A-knockout mice and DYRK1A inhibitors were used to investigate the role of DYRK1A in cardiomyocyte cell cycle activation and cardiac repair following MI. Additionally, we explored the underlying mechanisms by combining genome-wide transcriptomic, epigenomic, and proteomic analyses. FINDINGS: In adult mice subjected to MI, both conditional deletion and pharmacological inhibition of DYRK1A induced cardiomyocyte cell cycle activation and cardiac repair with improved cardiac function. Combining genome-wide transcriptomic and epigenomic analyses revealed that DYRK1A knockdown resulted in robust cardiomyocyte cell cycle activation (shown by the enhanced expression of many genes governing cell proliferation) associated with increased deposition of trimethylated histone 3 Lys4 (H3K4me3) and acetylated histone 3 Lys27 (H3K27ac) on the promoter regions of these genes. Mechanistically, via unbiased mass spectrometry, we discovered that WD repeat-containing protein 82 and lysine acetyltransferase 6A were key mediators in the epigenetic modification of H3K4me3 and H3K27ac and subsequent pro-proliferative transcriptome and cardiomyocyte cell cycle activation. INTERPRETATION: Our results reveal a significant role of DYRK1A in cardiac repair and suggest a drug target with translational potential for treating cardiomyopathy. FUNDING: This study was supported in part by grants from the National Natural Science Foundation of China (81930008, 82022005, 82070296, 82102834), National Key R&D Program of China (2018YFC1312700), Program of Innovative Research Team by the National Natural Science Foundation (81721001), and National Institutes of Health (5R01DK039308-31, 7R37HL023081-37, 5P01HL074940-11).


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Ciclo Celular , Código de Histonas , Histonas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteómica , Quinasas DyrK
8.
Bosn J Basic Med Sci ; 22(5): 772-783, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35490365

RESUMEN

The regenerative potential of cardiomyocytes in adult mammals is limited. Previous studies reported that cardiomyocyte proliferation is suppressed by AMP-activated protein kinase (AMPK). The role of liver kinase B1 (LKB1), as the major upstream kinase for AMPK, on cardiomyocyte proliferation is unclear. In this study, we found that the LKB1 levels rapidly increased after birth. With loss- and gain-of-function study, our data demonstrated that LKB1 levels negatively correlate with cardiomyocyte proliferation. We next identified Yes-associated protein (YAP) as the downstream effector of LKB1 using high-throughput RNA sequencing. Our results also demonstrated that AMPK plays an essential role in Lkb1 knockdown-induced cardiomyocyte proliferation. Importantly, deactivated AMPK abolished the LKB1-mediated regulation of YAP nuclear translocation and cardiomyocyte proliferation. Thus, our findings suggested the role of LKB1-AMPK-YAP axis during cardiomyocyte proliferation, which could be used as a potential target for inducing cardiac regeneration after injury.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Miocitos Cardíacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Mamíferos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Señalizadoras YAP
9.
Cardiovasc Res ; 118(10): 2304-2316, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34415333

RESUMEN

AIMS: Exposure to maternal diabetes is associated with increased prevalence of hypertension in the offspring. The mechanisms underlying the prenatal programming of hypertension remain unclear. Because endoplasmic reticulum (ER) stress plays a key role in vascular endothelial dysfunction in hypertension, we investigated whether aberrant ER stress causes endothelial dysfunction and high blood pressure in the offspring of dams with diabetes. METHODS AND RESULTS: Pregnant Sprague-Dawley rats were intraperitoneally injected with streptozotocin (35 mg/kg) or citrate buffer at Day 0 of gestation. Compared with control mother offspring (CMO), the diabetic mother offspring (DMO) had higher blood pressure and impaired endothelium-dependent relaxation in mesenteric arteries, accompanied by decreased AMPK phosphorylation and PPARδ expression, increased ER stress markers, and reactive oxygen species (ROS) levels. The inhibition of ER stress reversed these aberrant changes in DMO. Ex vivo treatment of mesenteric arteries with an AMPK agonist (A769662) or a PPARδ agonist (GW1516) improved the impaired EDR in DMO and reversed the tunicamycin-induced ER stress, ROS production, and EDR impairment in mesenteric arteries from CMO. The effects of A769662 were abolished by co-treatment with GSK0660 (PPARδ antagonist), whereas the effects of GW1516 were unaffected by Compound C (AMPK inhibitor). CONCLUSION: These results suggest an abnormal foetal programming of vascular endothelial function in offspring of rats with maternal diabetes that is associated with increased ER stress, which can be ascribed to down-regulation of AMPK/PPARδ signalling cascade.


Asunto(s)
Diabetes Mellitus , Hipertensión , PPAR delta , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus/metabolismo , Regulación hacia Abajo , Estrés del Retículo Endoplásmico , Endotelio Vascular/metabolismo , Femenino , PPAR delta/genética , PPAR delta/metabolismo , PPAR delta/farmacología , Embarazo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
10.
J Clin Invest ; 131(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34907911

RESUMEN

Circular RNAs (circRNAs) have been recently recognized as playing a role in the pathogenesis of vascular remodeling-related diseases by modulating the functions of miRNAs. However, the interplay between circRNAs and proteins during vascular remodeling remains poorly understood. Here, we investigated a previously identified circRNA, circEsyt2, whose expression is known to be upregulated during vascular remodeling. Loss- and gain-of­function mutation analyses in vascular smooth muscle cells (VSMCs) revealed that circEsyt2 enhanced cell proliferation and migration and inhibited apoptosis and differentiation. Furthermore, the silencing of circEsyt2 in vivo reduced neointima formation, while circEsyt2 overexpression enhanced neointimal hyperplasia in the injured carotid artery, confirming its role in vascular remodeling. Using unbiased protein-RNA screening and molecular validation, circEsyt2 was found to directly interact with polyC-binding protein 1 (PCBP1), an RNA splicing factor, and regulate PCBP1 intracellular localization. Additionally, circEsyt2 silencing substantially enhanced p53ß splicing via the PCBP1-U2AF65 interaction, leading to the altered expression of p53 target genes (cyclin D1, p21, PUMA, and NOXA) and the decreased proliferation of VSMCs. Thus, we identified a potentially novel circRNA that regulated vascular remodeling, via altered RNA splicing, in atherosclerotic mouse models.


Asunto(s)
Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Empalme del ARN , ARN Circular/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Remodelación Vascular , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Hiperplasia/genética , Hiperplasia/metabolismo , Ratones , Ratones Noqueados para ApoE , ARN Circular/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Proteína p53 Supresora de Tumor/genética
11.
Sci Rep ; 11(1): 15836, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349170

RESUMEN

Acute myocardial infarction (MI) is one of the leading causes of death in humans. Our previous studies showed that gastrin alleviated acute myocardial ischaemia-reperfusion injury. We hypothesize that gastrin might protect against heart injury after MI by promoting angiogenesis. An MI model was simulated by ligating the anterior descending coronary artery in adult male C57BL/6J mice. Gastrin was administered twice daily by intraperitoneal injection for 2 weeks after MI. We found that gastrin reduced mortality, improved myocardial function with reduced infarct size and promoted angiogenesis. Gastrin increased HIF-1α and VEGF expression. Downregulation of HIF-1α expression by siRNA reduced the proliferation, migration and tube formation of human umbilical vein endothelial cells. These results indicate that gastrin restores cardiac function after MI by promoting angiogenesis via the HIF-1α/VEGF pathway.


Asunto(s)
Gastrinas/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Neovascularización Patológica/prevención & control , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética
12.
Clin Exp Hypertens ; 43(7): 597-603, 2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33899625

RESUMEN

Background: Genetic variants of coding genes related to blood pressure regulation participate in the pathogenesis of hypertension and determines the response to specific antihypertensive drugs. G protein-coupled receptor kinase 4 (GRK4) and its variants are of great importance in pathogenesis of hypertension. However, little is known about role of GRK4 variants in determine circadian rhythm of blood pressure and response to candesartan in hypertension. The aim of this study was to analyze the correlation of GRK4 variants and circadian rhythm of blood pressure, and to explore their effect on antihypertensive efficiency of candestartan.Methods: In this study, a total of 1239 cases were eligible, completed ambulatory blood pressure monitoring (ABPm) observation and exon sequencing of G protein-coupled receptor kinase 4 (GRK4). ABPm was obtained before and after 4-week treatment of candesartan. Diurnal variation of systolic blood pressure and antihypertensive effect of candesartan were then assessed.Results: Compared to GRK4 wild type (GRK4-WT), patients with GRK4 variants were more likely to be non-dippers (odds ratio (OR) 6.672, 95% confidence interval (CI) 5.124-8.688, P < .001), with GRK4 A142V (OR 5.888, 95% CI 4.332-8.003, P < .001), A486V (OR 7.102, 95% CI 5.334-9.455, P < .001) and GRK4 R65L (OR 3.273, 95% CI 2.271-4.718, P < .001), respectively. Correlation analysis revealed that non-dippers rhythm of blood pressure were associated with GRK4 variants (r = .420, P < .001), with GRK4 A142V (r = .416, P < .001), A486V (r = .465, P < .001) and GRK4 R65L (r = .266, P < .001), respectively. When given 4-week candesartan, patients with GRK4 variants showed better antihypertensive effect as to drop in blood pressure (24 h mSBP, 21.21 ± 4.99 vs 12.34 ± 4.78 mmHg, P < .001) and morning peak (MP-SBP, 16.54 ± 4.37 vs 11.52 ± 4.14 mmHg, P < .001), as well as greater increase in trough to peak ratio (SBP-T/P, .71 ± .07 vs .58 ± .07, P < .001) and smoothness index (SBP-SI, 1.44 ± .16 vs 1.17 ± .11, P < .001) than those with GRK4 WT.Conclusion: This study indicates that hypertensive patients with GRK4 variants are more likely to be non-dippers. What's more, patients with GRK4 variants possess a significantly better antihypertensive response to candesartan than those with GRK4 WT.


Asunto(s)
Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Monitoreo Ambulatorio de la Presión Arterial , Ritmo Circadiano , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Hipertensión , Tetrazoles/uso terapéutico , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Ritmo Circadiano/genética , Variación Genética , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/genética
13.
Cell Prolif ; 53(11): e12910, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33047378

RESUMEN

OBJECTIVES: The mechanisms responsible for the postnatal loss of mammalian cardiac regenerative capacity are not fully elucidated. The aim of the present study is to investigate the role of progesterone in cardiac regeneration and explore underlying mechanism. MATERIALS AND METHODS: Effect of progesterone on cardiomyocyte proliferation was analysed by immunofluorescent staining. RNA sequencing was performed to screen key target genes of progesterone, and yes-associated protein (YAP) was knocked down to demonstrate its role in pro-proliferative effect of progesterone. Effect of progesterone on activity of YAP promoter was measured by luciferase assay and interaction between progesterone receptor and YAP promoter by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Adult mice were subjected to myocardial infarction, and then, effects of progesterone on adult cardiac regeneration were analysed. RESULTS: Progesterone supplementation enhanced cardiomyocyte proliferation in a progesterone receptor-dependent manner. Progesterone up-regulated YAP expression and knockdown of YAP by small interfering RNA reduced progesterone-mediated cardiomyocyte proliferative effect. Progesterone receptor interacted with the YAP promoter, determined by ChIP and EMSA; progesterone increased luciferase activity of YAP promoter and up-regulated YAP target genes. Progesterone administration also promoted adult cardiomyocyte proliferation and improved cardiac function in myocardial infarction. CONCLUSION: Our data uncover a role of circulating progesterone withdrawal as a novel mechanism for the postnatal loss of mammalian cardiac regenerative potential. Progesterone promotes both neonatal and adult cardiomyocyte proliferation by up-regulating YAP expression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Cardiotónicos/farmacología , Proliferación Celular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Progesterona/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Cardiotónicos/uso terapéutico , Proteínas de Ciclo Celular/genética , Células Cultivadas , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Progesterona/uso terapéutico , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos , Proteínas Señalizadoras YAP
14.
Circ Heart Fail ; 13(1): e006525, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31957467

RESUMEN

BACKGROUND: Long noncoding RNA (lncRNA) can regulate various physiological and pathological processes through multiple molecular mechanisms in cis and in trans. However, the role of lncRNAs in cardiac hypertrophy is yet to be fully elucidated. METHODS: A mouse lncRNA microarray was used to identify differentially expressed lncRNAs in the mouse hearts following transverse aortic constriction-induced pressure overload comparing to the sham-operated samples. The direct impact of one lncRNA, Ahit, on cardiomyocyte hypertrophy was characterized in neonatal rat cardiomyocytes in response to phenylephrine by targeted knockdown and overexpression. The in vivo function of Ahit was analyzed in mouse hearts by using cardiac-specific adeno-associated virus, serotype 9-short hairpin RNA to knockdown Ahit in combination with transverse aortic constriction. Using catRAPID program, an interaction between Ahit and SUZ12 (suppressor of zeste 12 protein homolog) was predicted and validated by RNA immunoprecipitation and immunoblotting following RNA pull-down. Chromatin immunoprecipitation was performed to determine SUZ12 or H3K27me3 occupancy on the MEF2A (myocyte enhancer factor 2A) promoter. Finally, the expression of human Ahit (leukemia-associated noncoding IGF1R activator RNA 1 [LUNAR1]) in the serum samples from patients of hypertrophic cardiomyopathy was tested by quantitative real-time polymerase chain reaction. RESULTS: A previously unannotated lncRNA, antihypertrophic interrelated transcript (Ahit), was identified to be upregulated in the mouse hearts after transverse aortic constriction. Inhibition of Ahit induced cardiac hypertrophy, both in vitro and in vivo, associated with increased expression of MEF2A, a critical transcriptional factor involved in cardiac hypertrophy. In contrast, overexpression of Ahit significantly attenuated stress-induced cardiac hypertrophy in vitro. Furthermore, Ahit was significantly upregulated in serum samples of patients diagnosed with hypertensive heart disease versus nonhypertrophic hearts (1.46±0.17 fold, P=0.0325). Mechanistically, Ahit directly bound and recruited SUZ12, a core PRC2 (polycomb repressive complex 2) protein, to the promoter of MEF2A, triggering its trimethylation on H3 lysine 27 (H3K27me3) residues and mediating the downregulation of MEF2A, thereby preventing cardiac hypertrophy. CONCLUSIONS: Ahit is a lncRNA with a significant role in cardiac hypertrophy regulation through epigenomic modulation. Ahit is a potential therapeutic target of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Cardiomegalia/patología , Regulación hacia Abajo , Regulación de la Expresión Génica/genética , Insuficiencia Cardíaca/genética , Humanos , Factores de Transcripción MEF2/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias , ARN Largo no Codificante/genética , Ratas Sprague-Dawley , Factores de Transcripción
15.
Sci Rep ; 9(1): 7693, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118464

RESUMEN

Genome-wide association studies (GWAS) have identified many genetic variants in genes related to lipid metabolism. However, how these variations affect lipid levels remains elusive. Long non-coding RNAs (lncRNAs) have been implicated in a variety of biological processes. We hypothesize lncRNAs are likely to be located within disease or trait-associated DNA regions to regulate lipid metabolism. The aim of this study was to investigate whether and how lncRNAs in lipid- associated DNA regions regulate cholesterol homeostasis in hepatocytes. In this study, we identified a novel long non-coding RNA in Lipid Associated Single nucleotide polymorphism gEne Region (LASER) by bioinformatic analysis. We report that LASER is highly expressed in both hepatocytes and peripheral mononuclear cells (PBMCs). Clinical studies showed that LASER expression is positively related with that of cholesterol containing apolipoprotein levels. In particular, we found that LASER is positively correlated with plasma PCSK9 levels in statin free patients. siRNAs mediated knock down of LASER dramatically reduces intracellular cholesterol levels and affects the expression of genes involved in cholesterol metabolism. Transcriptome analyses show that knockdown of LASER affects the expression of genes involved in metabolism pathways. We found that HNF-1α and PCSK9 were reduced after LASER knock-down. Interestingly, the reduction of PCSK9 can be blocked by the treatment of berberine, a natural cholesterol-lowering compound which functions as a HNF-1α antagonist. Mechanistically, we found that LASER binds to LSD1 (lysine-specific demethylase 1), a member of CoREST/REST complex, in nucleus. LASER knock-down enhance LSD1 targeting to genomic loci, resulting in decreased histone H3 lysine 4 mono-methylation at the promoter regions of HNF-1α gene. Conversely, LSD1 knock-down abolished the effect of LASER on HNF-1α and PCSK9 expressions. Finally, we found that statin treatment increased LASER expression, accompanied with increased PCSK9 expression, suggesting a feedback regulation of cholesterol on LASER expression. This observation may partly explain the statin escape during anti-cholesterol treatment. These findings identified a novel lncRNA in cholesterol homeostasis. Therapeutic targeting LASER might be an effective approach to augment the effect of statins on cholesterol levels in clinics.


Asunto(s)
Colesterol/metabolismo , Hepatocitos/metabolismo , Leucocitos Mononucleares/metabolismo , ARN Largo no Codificante/fisiología , Anticolesterolemiantes/farmacología , Anticolesterolemiantes/uso terapéutico , Apolipoproteínas/metabolismo , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Benzoatos/farmacología , Bencilaminas/farmacología , Berberina/farmacología , Cromosomas Humanos Par 11/genética , Enfermedad Coronaria/tratamiento farmacológico , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Células Hep G2 , Factor Nuclear 1-alfa del Hepatocito/biosíntesis , Factor Nuclear 1-alfa del Hepatocito/genética , Código de Histonas/efectos de los fármacos , Histona Demetilasas/metabolismo , Homeostasis/genética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Proproteína Convertasa 9/biosíntesis , Proproteína Convertasa 9/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN Largo no Codificante/genética , ARN Interferente Pequeño/genética
16.
Hypertension ; 72(4): 962-970, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30354705

RESUMEN

Epidemiological and experimental studies suggest that maternal diabetes mellitus programs hypertension that is associated with impaired sodium excretion in the adult offspring. However, the underlying mechanisms are not clear. Because dopamine receptor function is involved in the pathogenesis of hypertension, we hypothesized that impaired renal dopamine D1 receptor function is also involved in the hypertension in offspring of maternal diabetes mellitus. Maternal diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (35 mg/kg) to pregnant Sprague-Dawley rats at day 0 of gestation. Compared with the offspring of mothers injected with citrate buffer (control mother offspring), the diabetic mother offspring (DMO) had increased systolic blood pressure and impaired D1 receptor-mediated diuresis and natriuresis, accompanied by increased renal PKC (protein kinase C) expression and activity, GRK-2 (G protein-coupled receptor kinase-2) expression, D1 receptor phosphorylation, D1 receptor/Gαs uncoupling, and loss of D1 receptor-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule cells from DMO. Inhibition of PKC reduced the increased GRK-2 expression and normalized D1 receptor function in primary cultures of renal proximal tubule cells from DMO. In addition, DMO, relative to control mother offspring, in vivo, had increased oxidative stress, indicated by decreased renal glutathione and increased renal malondialdehyde and urine 8-isoprostane. Normalization of oxidative stress with tempol also normalized the renal D1 receptor phosphorylation, D1 receptor-mediated diuresis and natriuresis, and blood pressure in DMO. Our present study indicates that maternal diabetes mellitus-programed hypertension in the offspring is caused by impaired renal D1 receptor function because of oxidative stress that is mediated by increased PKC-GRK-2 activity.


Asunto(s)
Diabetes Mellitus , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión , Estrés Oxidativo/efectos de los fármacos , Complicaciones del Embarazo/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteína Quinasa C , Receptores de Dopamina D1/metabolismo , Animales , Antioxidantes/farmacología , Presión Sanguínea/fisiología , Óxidos N-Cíclicos/farmacología , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Femenino , Hipertensión/diagnóstico , Hipertensión/metabolismo , Masculino , Fosforilación , Embarazo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Eliminación Renal , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Marcadores de Spin
17.
J Am Soc Hypertens ; 12(2): 135-145, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29289466

RESUMEN

Both renin-angiotensin systems and insulin participate in kidney-involved blood pressure regulation. Activation of angiotensin II type 2 receptor (AT2R) decreases sodium reabsorption in renal proximal tubule (RPT) cells, whereas insulin produces the opposite effect. We presume that AT2R has an inhibitory effect on insulin receptor expression in RPT cells, which may affect renal sodium transport and therefore be of physiological or pathological significance. Our present study found that activation of AT2R inhibited insulin receptor expression in a concentration and time-dependent manner in RPT cells from Wistar-Kyoto (WKY) rats. In the presence of a protein kinase C (PKC) inhibitor (PKC inhibitor peptide 19-31, 10-6 mol/L) or a phosphatidylinositol 3 kinase inhibitor (wortmannin, 10-6 mol/L), the inhibitory effect of AT2R on insulin receptor was blocked, indicating that both PKC and phosphatidylinositol 3 kinase were involved in the signaling pathway. There was a linkage between AT2R and insulin receptor which was determined by both laser confocal microscopy and coimmunoprecipitation. However, the effect of AT2R activation on insulin receptor expression was different in RPT cells from spontaneously hypertensive rats (SHRs). Being contrary to the effect in WKY RPT cells, AT2R stimulation increased insulin receptor in SHR RPT cells. Insulin (10-7 mol/L, 15 minutes) enhanced Na+-K+-ATPase activity in both WKY and SHR RPT cells. Pretreatment with CGP42112 decreased the stimulatory effect of insulin on Na+-K+-ATPase activity in WKY RPT cells, whereas pretreatment with CGP42112 increased it in SHR RPT cells. It is suggested that activation of AT2R inhibits insulin receptor expression and function in RPT cells. The lost inhibitory effect of AT2R on insulin receptor expression may contribute to the pathophysiology of hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Túbulos Renales Proximales/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Receptor de Insulina/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Hipertensión/patología , Túbulos Renales Proximales/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Insulina/fisiología , Eliminación Renal , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
18.
Sci Transl Med ; 9(418)2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29187642

RESUMEN

Limb remote ischemic preconditioning (RIPC) is an effective means of protection against ischemia/reperfusion (IR)-induced injury to multiple organs. Many studies are focused on identifying endocrine mechanisms that underlie the cross-talk between muscle and RIPC-mediated organ protection. We report that RIPC releases irisin, a myokine derived from the extracellular portion of fibronectin domain-containing 5 protein (FNDC5) in skeletal muscle, to protect against injury to the lung. Human patients with neonatal respiratory distress syndrome show reduced concentrations of irisin in the serum and increased irisin concentrations in the bronchoalveolar lavage fluid, suggesting transfer of irisin from circulation to the lung under physiologic stress. In mice, application of brief periods of ischemia preconditioning stimulates release of irisin into circulation and transfer of irisin to the lung subjected to IR injury. Irisin, via lipid raft-mediated endocytosis, enters alveolar cells and targets mitochondria. Interaction between irisin and mitochondrial uncoupling protein 2 (UCP2) allows for prevention of IR-induced oxidative stress and preservation of mitochondrial function. Animal model studies show that intravenous administration of exogenous irisin protects against IR-induced injury to the lung via improvement of mitochondrial function, whereas in UCP2-deficient mice or in the presence of a UCP2 inhibitor, the protective effect of irisin is compromised. These results demonstrate that irisin is a myokine that facilitates RIPC-mediated lung protection. Targeting the action of irisin in mitochondria presents a potential therapeutic intervention for pulmonary IR injury.


Asunto(s)
Fibronectinas/sangre , Fibronectinas/metabolismo , Mitocondrias/metabolismo , Daño por Reperfusión/sangre , Daño por Reperfusión/metabolismo , Animales , Animales Recién Nacidos , Femenino , Humanos , Masculino , Ratones , Estrés Oxidativo/fisiología , Proteína Desacopladora 2/antagonistas & inhibidores , Proteína Desacopladora 2/deficiencia , Proteína Desacopladora 2/metabolismo
19.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1382-1391, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28185955

RESUMEN

Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE: Our goal was to investigate the mechanisms of endothelial Nox4 in regulating atherosclerosis. APPROACH AND RESULTS: Atherosclerosis-prone conditions (disturbed blood flow, type I diabetes, and Western diet) downregulated endothelial Nox4 mRNA in arteries. To address whether the downregulated endothelial Nox4 was directly involved in the development of atherosclerosis, we generated mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), driven by the endothelial specific promoter Tie-2, on atherosclerosis-prone genetic background (ApoE deficient mice) to mimic the effect of decreased endothelial Nox4. Nox4DN significantly increased type I diabetes-induced aortic stiffness and atherosclerotic lesions. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly upregulated in Nox4DN endothelial cells (EC). Inhibition of sEH activity in Nox4DN EC suppressed inflammation and macrophage adhesion to EC. On the contrary, overexpression of endothelial wild type Nox4 suppressed sEH, ameliorated Western diet-induced atherosclerosis and decreased aortic stiffness. CONCLUSIONS: Atherosclerosis-prone conditions downregulated endothelial Nox4 to accelerate the progress of atherosclerosis, at least in part, by upregulating sEH to enhance inflammation.


Asunto(s)
Aterosclerosis/enzimología , Endotelio Vascular/enzimología , Epóxido Hidrolasas/metabolismo , Macrófagos/enzimología , NADPH Oxidasa 4/metabolismo , Sustitución de Aminoácidos , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Adhesión Celular/genética , Endotelio Vascular/patología , Epóxido Hidrolasas/genética , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Macrófagos/patología , Ratones , Ratones Noqueados , Mutación Missense , NADPH Oxidasa 4/genética
20.
J Mol Cell Cardiol ; 92: 30-40, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26812119

RESUMEN

UNLABELLED: Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE: Our goal was to investigate the role of smooth muscle Nox4 in atherosclerosis. APPROACH AND RESULTS: Atherosclerosis-prone conditions (disturbed blood flow and Western diet) increased Nox4 mRNA level in smooth muscle of arteries. To address whether upregulated smooth muscle Nox4 under atherosclerosis-prone conditions was directly involved in the development of atherosclerosis, mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), specifically in smooth muscle, were generated on a FVB/N ApoE deficient genetic background to counter the effect of increased smooth muscle Nox4. Nox4DN significantly decreased aortic stiffness and atherosclerotic lesions, with no effect on blood pressure. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly downregulated in Nox4DN smooth muscle cells (SMC), at both mRNA and protein levels. Downregulation of sEH by siRNA decreased SMC proliferation and migration, and suppressed inflammation and macrophage adhesion to SMC. CONCLUSIONS: Downregulation of smooth muscle Nox4 inhibits atherosclerosis by suppressing sEH, which, at least in part, accounts for inhibition of SMC proliferation, migration and inflammation.


Asunto(s)
Aterosclerosis/genética , Inflamación/genética , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasas/genética , Animales , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/patología , Presión Sanguínea/genética , Movimiento Celular/genética , Proliferación Celular/genética , Regulación de la Expresión Génica , Humanos , Inflamación/patología , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/patología , NADPH Oxidasa 4 , NADPH Oxidasas/biosíntesis , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...