Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
ACS Synth Biol ; 13(9): 2887-2898, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39262282

RESUMEN

Genomic integration of heterologous genes is the preferred approach in industrial fermentation-related strains due to the drawbacks associated with plasmid-mediated microbial fermentation, including additional growth burden, genetic instability, and antibiotic contamination. Synthetic biology and genome editing advancements have made gene integration convenient. Integrated expression is extensively used in the field of biomanufacturing and is anticipated to become the prevailing method for expressing recombinant proteins. Therefore, it is pivotal to strengthen the expression of exogenous genes at the genome level. Here, we systematically optimized the integrated expression system of Escherichia coli from 3 aspects. First, the integration site slmA with the highest expression activity was screened out of 18 sites in the ORI region of the E. coli BL21 (DE3) genome. Second, we characterized 16 endogenous promoters in E. coli and combined them with the T7 promoter. A constitutive promoter, Plpp-T7, exhibited significantly higher expression strength than the T7 promoter, achieving a 3.3-fold increase in expression levels. Finally, to further enhance the T7 expression system, we proceeded with overexpression of T7 RNA polymerase at the chassis cell level. The resulting constitutive efficient integrated expression system (CEIES_Ecoli) showed a 2-fold increase in GFP expression compared to the pET3b recombinant plasmid. Therefore, CEIES_Ecoli was applied to the integrated expression of nitrilase and hyaluronidase, achieving stable and efficient enzyme expression, with enzyme activities of 22.87 and 12,195 U·mL-1, respectively, comparable to plasmid levels. Overall, CEIES_Ecoli provides a stable and efficient method of gene expression without the need for antibiotics or inducers, making it a robust tool for synthetic biology, enzyme engineering, and related applications.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Plásmidos , Regiones Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Plásmidos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Biología Sintética/métodos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
2.
Food Chem ; 460(Pt 3): 140738, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142202

RESUMEN

The biocompatible MIL-88A metal-organic framework (MOF), synthesized from food-grade fumaric acid and ferric chloride, was introduced for the efficient one-step in situ encapsulation of capsaicinoids as a nanopreservative. The resulting MIL-88A@Caps nanoparticles can load 61.43 mg/g of capsaicinoids, surpassing conventional MOF-based encapsulation. The potent MIL-88A@Caps nanoformulations synergize the intrinsic antimicrobial properties of MIL-88A and capsaicinoids. At the same concentration (0.5 mg/mL), MIL-88A@Caps was highly effective against S. aureus and Salmonella, with inhibition rates of 94.90 ± 0.58% and 94.30 ± 1.24%, respectively, compared to MIL-88A (62.28 ± 5.04% and 70.46 ± 1.96%) and capsaicinoids (63.68 ± 1.25% and 49.53 ± 1.22%), respectively. Model precooked-chicken preservation experiments revealed that MIL-88A@Caps significantly delayed spoilage parameters compared to untreated samples, with more favorable viable counts (8.08 lgCFU/g), pH value (6.60 ± 0.02), TVB-N value (8.59 ± 0.21 mg/100 g), and color changes on day 9. Our findings yield a green nanopreservative for meat safety.


Asunto(s)
Capsaicina , Conservación de Alimentos , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Animales , Capsaicina/química , Conservación de Alimentos/métodos , Carne/análisis , Pollos , Nanopartículas/química , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Antibacterianos/química , Antibacterianos/farmacología , Inocuidad de los Alimentos
3.
Biotechnol Adv ; 75: 108416, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39033835

RESUMEN

Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.


Asunto(s)
Glicosaminoglicanos , Glicosaminoglicanos/biosíntesis , Glicosaminoglicanos/metabolismo , Humanos , Vías Biosintéticas , Animales , Polisacáridos/biosíntesis , Polisacáridos/metabolismo
4.
Food Funct ; 15(15): 8053-8069, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38989659

RESUMEN

Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.


Asunto(s)
Microbioma Gastrointestinal , Hígado , Metionina , Ratones Endogámicos C57BL , Animales , Metionina/metabolismo , Metionina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Hígado/metabolismo , Hígado Graso/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos
5.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889067

RESUMEN

Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.

6.
J Agric Food Chem ; 72(27): 15265-15275, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38918075

RESUMEN

Probiotics can regulate gut microbiota and protect against acute alcohol-induced liver injury through the gut-liver axis. However, efficacy is strain-dependent, and their mechanism remains unclear. This study investigated the effect of lactic acid bacteria (LAB), including Lacticaseibacillus paracasei E10 (E10), Lactiplantibacillus plantarum M (M), Lacticaseibacillus rhamnosus LGG (LGG), Lacticaseibacillus paracasei JN-1 (JN-1), and Lacticaseibacillus paracasei JN-8 (JN-8), on the prevention of acute alcoholic liver injury in mice. We found that LAB pretreatment reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) and reduced hepatic total cholesterol (TC) and triglyceride (TG). JN-8 pretreatment exhibited superior efficacy in improving hepatic antioxidation. LGG and JN-8 pretreatment significantly attenuated hepatic and colonic inflammation by decreasing the expression of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) and increasing the expression of interleukin 10 (IL-10). JN-1 and JN-8 pretreatments have better preventive effects than other LAB pretreatment on intestinal barrier dysfunction. In addition, the LAB pretreatment improved gut microbial dysbiosis and bile acid (BA) metabolic abnormality. All of the strains were confirmed to have bile salt deconjugation capacities in vitro, where M and JN-8 displayed higher activities. This study provides new insights into the prevention and mechanism of LAB strains in preventing acute alcoholic liver injury.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Lactobacillales , Hígado , Ratones Endogámicos C57BL , Probióticos , Animales , Ratones , Probióticos/administración & dosificación , Hígado/metabolismo , Masculino , Humanos , Ácidos y Sales Biliares/metabolismo , Lactobacillales/metabolismo , Hepatopatías Alcohólicas/prevención & control , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/microbiología , Aspartato Aminotransferasas/metabolismo , Aspartato Aminotransferasas/sangre , Alanina Transaminasa/metabolismo , Alanina Transaminasa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Etanol/efectos adversos
7.
Gut Microbes ; 16(1): 2370634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935546

RESUMEN

Diet is a key player in gut-liver axis. However, the effect of different dietary patterns on gut microbiota and liver functions remains unclear. Here, we used rodent standard chow and purified diet to mimic two common human dietary patterns: grain and plant-based diet and refined-food-based diet, respectively and explored their impacts on gut microbiota and liver. Gut microbiota experienced a great shift with notable increase in Desulfovibrio, gut bile acid (BA) levels elevated significantly, and liver inflammation was observed in mice fed with the purified diet. Liver inflammation and elevated gut BA levels also occurred in mice fed with the chow diet after receiving Desulfovibrio desulfuricans ATCC 29,577 (DSV). Restriction of sulfur-containing amino acids (SAAs) prevented liver injury mainly through higher hepatic antioxidant and detoxifying ability and reversed the elevated BA levels due to excess Desulfovibrio. Ex vivo fermentation of human fecal microbiota with primary BAs demonstrated that DSV enhanced production of secondary BAs. Higher concentration of both primary and secondary BAs were found in the gut of germ-free mice after receiving DSV. In conclusion, Restriction of SAAs in diet may become an effective dietary intervention to prevent liver injury associated with excess Desulfovibrio in the gut.


Asunto(s)
Desulfovibrio , Microbioma Gastrointestinal , Hígado , Ratones Endogámicos C57BL , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Hígado/metabolismo , Humanos , Desulfovibrio/metabolismo , Masculino , Ácidos y Sales Biliares/metabolismo , Aminoácidos/metabolismo , Dieta , Heces/microbiología , Heces/química , Azufre/metabolismo , Aminoácidos Sulfúricos/metabolismo
8.
Food Chem ; 457: 140186, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38924911

RESUMEN

Qu-aroma is of great significance for evaluation the quality of Daqu starter. This study aimed to decode the Qu-aroma of medium-temperature Daqu (MT-Daqu) via "top-down" and "bottom-up" approaches. Firstly, 52 aroma descriptors were defined to describe the MT-Daqu aroma by quantitative descriptive analysis. Secondly, 193 volatile organic compounds (VOCs) were identified from 42 MT-Daqu samples by HS-SPME-GC-MS, and 43 dominant VOCs were screened out by frequence of occurrence or abundance. By Thin Film (TF)-SPME-GC-O-MS, 27 odors and 90 VOCs were detected in MT-Daqu mixture, and 14 odor-active VOCs were screened out by odor intensity. Thirdly, a five-level MT-Daqu aroma wheel was constructed by matching 52 aroma descriptors and 37 aroma-active VOCs. Finally, Qu-aroma of MT-Daqu was reconstructed with 37 aroma-active VOCs and evaluated by omission experiments. Hereinto, 26 key aroma-active VOCs were determined by OAV value ≥1, including isovaleric acid, 1-hexanol, isovaleraldehyde, 2-octanone, trimethylpyrazine, γ-nonalactone, 4-vinylguaiacol, etc.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Odorantes , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Odorantes/análisis , Humanos , Adulto , Masculino , Femenino , Microextracción en Fase Sólida , Temperatura , Gusto , Aromatizantes/química , Adulto Joven , Olfato
9.
Biotechnol Bioeng ; 121(7): 2163-2174, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38595326

RESUMEN

Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.


Asunto(s)
Antígenos Bacterianos , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Reactores Biológicos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Solubilidad
10.
Nutrients ; 16(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38613073

RESUMEN

Colorectal cancer (CRC), a major global health concern, may be influenced by dietary protein digestibility impacting gut microbiota and metabolites, which is crucial for cancer therapy effectiveness. This study explored the effects of a casein protein diet (CTL) versus a free amino acid (FAA)-based diet on CRC progression, gut microbiota, and metabolites using carcinogen-induced (AOM/DSS) and spontaneous genetically induced (ApcMin/+ mice) CRC mouse models. Comprehensive approaches including 16s rRNA gene sequencing, transcriptomics, metabolomics, and immunohistochemistry were utilized. We found that the FAA significantly attenuated CRC progression, evidenced by reduced colonic shortening and histopathological alterations compared to the CTL diet. Notably, the FAA enriched beneficial gut bacteria like Akkermansia and Bacteroides and reversed CRC-associated dysbiosis. Metabolomic analysis highlighted an increase in ornithine cycle metabolites and specific fatty acids, such as Docosapentaenoic acid (DPA), in FAA-fed mice. Transcriptomic analysis revealed that FAA up-regulated Egl-9 family hypoxia inducible factor 3 (Egln 3) and downregulated several cancer-associated pathways including Hippo, mTOR, and Wnt signaling. Additionally, DPA was found to significantly induce EGLN 3 expression in CRC cell lines. These results suggest that FAA modulate gut microbial composition, enhance protective metabolites, improve gut barrier functions, and inhibit carcinogenic pathways.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Ratones , ARN Ribosómico 16S , Carcinogénesis , Transformación Celular Neoplásica , Carcinógenos , Aminoácidos
11.
Biotechnol J ; 19(3): e2300650, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479990

RESUMEN

S-Adenosyl-L-methionine (SAM) is a substrate for many enzyme-catalyzed reactions and provides methyl groups in numerous biological methylations, and thus has vast applications in the agriculture and medical field. Saccharomyces cerevisiae has been engineered as a platform with significant potential for producing SAM, but the current production has room for improvement. Thus, a method that consists of a series of metabolic engineering strategies was established in this study. These strategies included enhancing SAM synthesis, increasing ATP supply, down-regulating SAM metabolism, and down-regulating competing pathway. After combinatorial metabolic engineering, Bayesian optimization was conducted on the obtained strain C262P6S to optimize the fermentation medium. A final yield of 2972.8 mg·L-1 at 36 h with 29.7% of the L-Met conversion rate in the shake flask was achieved, which was 26.3 times higher than that of its parent strain and the highest reported production in the shake flask to date. This paper establishes a feasible foundation for the construction of SAM-producing strains using metabolic engineering strategies and demonstrates the effectiveness of Bayesian optimization in optimizing fermentation medium to enhance the generation of SAM.


Asunto(s)
Metionina , S-Adenosilmetionina , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica/métodos , Teorema de Bayes , Fermentación , Racemetionina/metabolismo
12.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 877-894, 2024 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-38545984

RESUMEN

Daqu is the saccharifying, fermenting, and aroma-producing agent used in Baijiu brewing, and its maturation is crucial for obtaining high-quality Daqu. Previous studies have explored the microbial community composition and diversity before and after maturation. However, little is known about the changes in the functions of microbial community. In this study, based on the analyses of enzyme activities and volatile compounds of medium-temperature Daqu before and after maturation, metagenomics was used to analyze the differences in the composition of microbial community and the potential functions, with the aim to explore the microorganisms involved in changes in enzyme activities and important volatiles. The results showed that the moisture (P≤0.05), starch content, liquefying activity, saccharifying activity (P≤0.05), and fermentative activity decreased, while the acidity and esterifying activity (P≤0.05) increased after Daqu maturation. In the meantime, the composition of volatile compounds changed significantly (P=0.001), with significant decreases in the contents of aromatic alcohols and esters as well as significant increases in the contents of pyrazines, ketones, and higher fatty alcohols. The relative abundances of Mucorales (34.8%-23.0%) and Eurotiales (34.3%-20.1%) decreased in matured Daqu, and functional predictions showed these changes decreased the gene abundances of α-amylase, α-glucosidase, alcohol dehydrogenase, and alcohol dehydrogenase (NADP+) (P > 0.05), resulting in lower levels of liquefying activity (P > 0.05), saccharifying activity (P≤0.05), fermentative activity (P > 0.05), as well as aromatic alcohols such as phenylethyl alcohol (P≤0.05). In addition, higher relative abundances of Saccharomycetales (2.9%-16.6%), Lactobacillales (14.9%-23.6%), and Bacillales (0.8%-3.8%) were observed after maturation, and they were conducive to improving the gene abundances of alcohol O-acetyltransferase, carboxylesterase, acetolactate decarboxylase, (R)-acetoin dehydrogenase, and (S)-acetoin dehydrogenase (P≤0.05), resulting in significantly higher levels of esterifying activity and pyrazines (P≤0.05). The microorganisms involved in the changes in enzyme activities and important volatiles before and after Daqu maturation were studied at the gene level in this work, which may facilitate further rational regulation for Daqu production.


Asunto(s)
Bacterias , Microbiota , Bacterias/genética , Temperatura , Acetoina Deshidrogenasa , Alcohol Deshidrogenasa , Microbiota/fisiología , Fermentación , Pirazinas
13.
Artículo en Inglés | MEDLINE | ID: mdl-38381313

RESUMEN

Sisomicin is a broad-spectrum aminoglycoside antibiotic and is the precursor of netilmicin and plazomicin. However, the fermentation level of sisomicin is still low compared with other antibiotics, which restricts the application of sisomicin and its derivatives. In this study, to improve sisomicin production, breeding of high-yielding sisomicin strains was conducted with chemical mutagenesis using Micromonospora inyoensis OG-1 (titer, 1042 U·mL-1) as the starting strain. Protoplast preparation was conducted under optimal conditions, and protoplast mutagenesis was performed with a suitable concentration of diethyl sulfate. Subsequently, a high-yielding and genetically stable strain (H6-32) was obtained by screening, with a sisomicin titer of 1486 U·mL-1 (an increase of 42.6%). Finally, carbon and nitrogen sources were optimized to further improve sisomicin production, and a sisomicin titer of 1780 U·mL-1 was ultimately obtained by controlling the dissolved oxygen level at 30% in a 5-L fermenter, which to the best of our knowledge is the highest reported titer ever achieved by fermentation. Comparative genome analysis showed that a total of 13 genes in the genome of the mutant strain H6-32 were mutated compared to the original strain. This study not only provides a reference for further breeding of high-yielding strains and fermentation optimization, but also enhances our understanding of sisomicin production.

14.
Int J Biol Macromol ; 262(Pt 1): 129928, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309393

RESUMEN

Trehalase has attracted widespread attention in medicine, agriculture, food, and ethanol industry due to its ability to specifically degrade trehalose. Efficient expression of trehalase remains a challenge. In this study, a putative trehalase-encoding gene (Tre-zm) from Zunongwangia mangrovi was explored using gene-mining strategy and heterologously expressed in E. coli. Trehalase activity reached 3374 U·mL-1 after fermentation optimization. The scale-up fermentation in a 15 L fermenter was achieved with a trehalase production of 15,068 U·mL-1. The recombinant trehalase TreZM was purified and characterized. It displayed optimal activity at 35 °C and pH 8.5, with Mn2+, Sn2+, Na+, and Fe2+ promoting the activity. Notably, TreZM showed significant inhibition effect on biofilm forming of Staphylococcus epidermidis. The combination of TreZM with a low concentration of antibiotics could inhibit 70 % biofilm formation of Staphylococcus epidermidis and 28 % of Pseudomonas aeruginosa. Hence, this study provides a promising candidate for industrial production of trehalase and highlights its potential application to control harmful biofilms.


Asunto(s)
Escherichia coli , Trehalasa , Trehalasa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Trehalosa/farmacología , Trehalosa/metabolismo , Biopelículas
15.
Artículo en Inglés | MEDLINE | ID: mdl-38411935

RESUMEN

Hyaluronate lyase (HA lyase) has potential in the industrial processing of hyaluronan. In this study, HylP, an HA lyase from Streptococcus pyogenes phage (SPB) was successfully expressed in Bacillus subtilis. To improve the extracellular enzyme activity of HylP in B. subtilis, signal peptide engineering systematic optimization was carried out, and cultured it from shake flasks and fermenters, followed by purification, characterization, and analysis of degradation products. The results showed that the replacement of the signal peptide increased the extracellular enzyme activity of HylP from 1.0 × 104 U/mL to 1.86 × 104 U/mL in the shake flask assay, and using a 20 L fermenter in a batch fermentation process, the extracellular enzyme activity achieved the level of 1.07 × 105 U/mL. HylP exhibited significant thermal and pH stability in the temperature range of 40 °C and pH range of 4-8, respectively. The enzyme showed optimum activity at 40 °C and pH 6, with significant activity in the presence of Na+, Mg2+, and Co2+ ions. Degradation analysis showed that HylP efficiently degraded hyaluronan as an endonuclease, releasing unsaturated disaccharides. These comprehensive findings underscore the substantial industrial potential of HylP for hyaluronan processing applications, offering valuable insights into enzyme characterization and optimization of expression for potential industrial utilization.

16.
Microb Biotechnol ; 17(2): e14416, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381051

RESUMEN

Many traditional fermented foods and beverages industries around the world request the addition of multi-species starter cultures. However, the microbial community in starter cultures is subject to fluctuations due to their exposure to an open environment during fermentation. A rapid detection approach to identify the microbial composition of starter culture is essential to ensure the quality of the final products. Here, we applied single-cell Raman spectroscopy (SCRS) combined with machine learning to monitor Oceanobacillus species in Daqu starter, which plays crucial roles in the process of Chinese baijiu. First, a total of six Oceanobacillus species (O. caeni, O. kimchii, O. iheyensis, O. sojae, O. oncorhynchi subsp. Oncorhynchi and O. profundus) were detected in 44 Daqu samples by amplicon sequencing and isolated by pure culture. Then, we created a reference database of these Oceanobacillus strains which correlated their taxonomic data and single-cell Raman spectra (SCRS). Based on the SCRS dataset, five machine-learning algorithms were used to classify Oceanobacillus strains, among which support vector machine (SVM) showed the highest rate of accuracy. For validation of SVM-based model, we employed a synthetic microbial community composed of varying proportions of Oceanobacillus species and demonstrated a remarkable accuracy, with a mean error was less than 1% between the predicted result and the expected value. The relative abundance of six different Oceanobacillus species during Daqu fermentation was predicted within 60 min using this method, and the reliability of the method was proved by correlating the Raman spectrum with the amplicon sequencing profiles by partial least squares regression. Our study provides a rapid, non-destructive and label-free approach for rapid identification of Oceanobacillus species in Daqu starter culture, contributing to real-time monitoring of fermentation process and ensuring high-quality products.


Asunto(s)
Algoritmos , Espectrometría Raman , Reproducibilidad de los Resultados , Bases de Datos Factuales , Aprendizaje Automático
17.
Appl Microbiol Biotechnol ; 108(1): 54, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38175240

RESUMEN

Hyaluronidases catalyze the degradation of hyaluronan (HA), which is finding rising applications in medicine, cosmetic, and food industries. Recombinant expression of hyaluronidases in microbial hosts has been given special attention as a sustainable way to substitute animal tissue-derived hyaluronidases. In this study, we focused on optimizing the secretion of hyaluronidase from Homo sapiens in Pichia pastoris by secretion pathway engineering. The recombinant hyaluronidase was first expressed under the control of a constitutive promoter PGCW14. Then, two endoplasmic reticulum-related secretory pathways were engineered to improve the secretion capability of the recombinant strain. Signal peptide optimization suggested redirecting the protein into co-translational translocation using the ost1-proα signal sequence improved the secretion level by 20%. Enhancing the co-translational translocation by overexpressing signal recognition particle components further enhanced the secretory capability by 48%. Then, activating the unfolded protein response by overexpressing a transcriptional factor ScHac1p led to a secreted hyaluronidase activity of 4.06 U/mL, which was 2.1-fold higher than the original strain. Finally, fed-batch fermentation elevated the production to 19.82 U/mL. The combined engineering strategy described here could be applied to enhance the secretion capability of other proteins in yeast hosts. KEY POINTS: • Improving protein secretion by enhancing co-translational translocation in P. pastoris was reported for the first time. • Overexpressing Hac1p homologous from different origins improved the rhPH-20 secretion. • A 4.9-fold increase in rhPH-20 secretion was achieved after fermentation optimization and fed-batch fermentation.


Asunto(s)
Hialuronoglucosaminidasa , Respuesta de Proteína Desplegada , Animales , Humanos , Hialuronoglucosaminidasa/genética , Transporte de Proteínas , Retículo Endoplásmico
18.
Food Funct ; 15(3): 1612-1626, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38240339

RESUMEN

Juice fermented with lactic acid bacteria (LAB) has received attention due to its health benefits, such as antioxidant and anti-inflammatory. Previous research on LAB-fermented goji juice mainly focused on exploring the changes in the metabolite profile and antioxidant activity in vitro, whereas the liver protection properties of LAB-fermented goji juice in vivo are still unknown. This study aimed to investigate the effects of Lacticaseibacillus paracasei E10-fermented goji juice (E10F), Lactiplantibacillus plantarum M-fermented goji juice (MF), Lacticaseibacillus rhamnosus LGG-fermented goji juice (LGGF) on preventing acute alcoholic liver injury with physiology, gut microbial, and metabolic profiles in mice. Compared with goji juice, E10F, MF, and LGGF enhanced the protective effect against liver injury by reducing serum alanine transaminase (ALT) levels, improving the hepatic glutathione (GSH) antioxidant system, and attenuating inflammation by decreasing the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-ß. Furthermore, E10F, MF, and LGGF increased intestinal integrity, restructured the gut microbiota including Bacteroides and Lactobacillus, and altered gut microbial metabolites including kyotorphin, indolelactic acid, and N-methylserotonin. Pretreatment of different LAB-fermented goji juice in mice showed significant differences in gut microbiota and metabolism. The correlation analysis demonstrated that the increase of Lactobacillus, indolelactic acid, and N-methylserotonin by E10F, MF, and LGGF was positively correlated with reduced inflammation and improved liver and gut function. Taken together, E10F, MF, and LGGF all have the potential to be converted into dietary interventions to combat acute alcoholic liver injury. It provided a reference for the study of the hepatoprotective effect of LAB-fermented goji juice.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Lycium , Serotonina/análogos & derivados , Ratones , Animales , Lycium/metabolismo , Antioxidantes/metabolismo , Fermentación , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Etanol/metabolismo
19.
Biotechnol J ; 19(1): e2300136, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971189

RESUMEN

The L-serine exporters ThrE and SerE play important roles in L-serine production by Corynebacterium glutamicum. Deletion of both thrE and serE decreased L-serine titer by 60%, suggesting the existence of other L-serine exporters. A comparative transcriptomics identified NCgl0254 and NCgl0255 as novel L-serine exporters. Further analysis of the contributions of ThrE, SerE, NCgl0254, and NCgl0255 found that SerE was the major L-serine exporter in C. glutamicum and these four L-serine exporters were responsible for 79.7% of L-serine export. Deletion of one L-serine exporter upregulated the transcription levels of the other three, which might be coursed by increased intracellular concentrations of L-serine. Overexpression of NCgl0254 and NCgl0255 increased L-serine titer by 20.8% in C. glutamicum A36, while overexpression of the four L-serine exporters increased L-serine production by 31.9% (41.1 g·L-1 ) in C. glutamicum A36. The identification of novel L-serine exporters in C. glutamicum will help to improve industrial production of L-serine.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Serina , Proteínas Bacterianas/genética , Ingeniería Metabólica
20.
Crit Rev Biotechnol ; 44(3): 448-461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36944486

RESUMEN

L-serine and its derivative L-cysteine have broad industrial applications, and their direct fermentative production from renewable biomass is gaining increasing attention. Corynebacterium glutamicum is an extensively studied and well-established industrial microorganism, which is a predominant microbial host for producing amino acids. In this review, updated information on the genetics and molecular mechanisms underlying L-serine and L-cysteine production using C. glutamicum is presented, including their synthesis and degradation pathways, and other intracellular processes related to their production, as well as the mechanisms underlying substrate import and product export are also analyzed. Furthermore, metabolic strategies for strain improvement are systematically discussed, and conclusions and future perspectives for bio-based L-serine and L-cysteine production using C. glutamicum are presented. This review can provide a thorough understanding of L-serine and L-cysteine metabolic pathways to facilitate metabolic engineering modifications of C. glutamicum and development of more efficient industrial fermentation processes for L-serine and L-cysteine production.


Asunto(s)
Corynebacterium glutamicum , Cisteína , Cisteína/metabolismo , Serina/metabolismo , Corynebacterium glutamicum/genética , Aminoácidos/metabolismo , Ingeniería Metabólica , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA