Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
J Mater Chem B ; 10(6): 899-908, 2022 02 09.
Article En | MEDLINE | ID: mdl-35043828

Water-soluble three-dimensional supramolecular-organic frameworks (SOFs) and temoporfin (mTHPC) are discovered to form uniform self-assembled nanoparticles. These nanoparticles demonstrate an improved 1O2 generation efficiency due to the reduced aggregation-caused quenching effect. SOFs and self-assembled nanoparticles are biocompatible. Self-assembled nanoparticles display an improved photo cytotoxicity toward four types of human cancer cells. The tumor model in mice shows that self-assembled nanoparticles could efficiently suppress tumor growth in vivo.


Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mesoporphyrins/therapeutic use , Mice , Neoplasms/drug therapy , Photochemotherapy/methods
2.
Drug Deliv ; 29(1): 128-137, 2022 Dec.
Article En | MEDLINE | ID: mdl-34967270

Chemotherapy is one of the main ways to treat breast cancer clinically. However, the multidrug resistance to anti-tumor drugs limits their clinical use. To overcome these drawbacks, development of drug delivery systems (DDSs) has attracted more and more attention in cancer therapy. At present, the preparation and purification process are complicated for many reported DDSs, while clinic calls for new DDSs that are more convenient for preparation. Here, a new pH-responsive supramolecular organic framework drug delivery complex loading doxorubicin (DOX) is fabricated. Anti-tumor activity of the system in vitro was investigated by cell cytotoxicity, uptake assay, and cell apoptosis analysis. The anti-tumor activity in vivo was investigated by inspecting nude mice body weight, tumor volume, and weight, also a preliminary mechanism probe was conducted by HE and TUNEL staining. The DOX@SOF displayed high stability, good biocompatibility, and pH regulated drug release. At acid condition, the hydrazone bonds would be broken, which result in the dissociation of SOF, and then the drugs would be released from the system. Furthermore, DOX@SOF enhanced cellular internalization. Both in vitro and in vivo experiments reflected that DOX@SOF could enhance the anti-tumor activity of DOX for the MCF-7/ADR tumor cells and tumors. This study provides a highly efficient strategy to prepare stimulus-responsive supramolecular drug delivery complex for treatment of drug-resistant cancer, the results presented inspiring scientific interests in exploring new drug delivery strategy and reversing multi-drug resistance for clinical chemotherapy.


Drug Carriers/chemistry , Animals , Apoptosis/drug effects , Breast Neoplasms , Cell Line, Tumor , Cell Survival/drug effects , Chemistry, Pharmaceutical , Doxorubicin/administration & dosage , Drug Liberation , Drug Resistance, Neoplasm , Female , Humans , Hydrogen-Ion Concentration , Mice , Mice, Inbred BALB C , Mice, Nude , Random Allocation , Surface Properties , Xenograft Model Antitumor Assays
3.
Drug Deliv ; 29(1): 1-9, 2022 Dec.
Article En | MEDLINE | ID: mdl-34949133

Chemotherapy is one of the main ways to treat breast cancer clinically. However, the multidrug resistance to anti-tumor drugs limits their clinical use. To overcome these drawbacks, the development of drug delivery systems (DDSs) has attracted more and more attention in cancer therapy. At present, the preparation and purification process are complicated for many reported DDSs, while the clinic calls for new DDSs that are more convenient for preparation. Here a new pH-responsive supramolecular organic framework drug delivery complex loading doxorubicin (DOX) is fabricated. Anti-tumor activity of the system in vitro was investigated by cell cytotoxicity, uptake assay, and cell apoptosis analysis. The anti-tumor activity in vivo was investigated by inspecting nude mice body weight, tumor volume and weight, also a preliminary mechanism probe was conducted by HE and TUNEL staining. The DOX@SOF displayed high stability, good biocompatibility and pH-regulated drug release. At acid condition, the hydrazone bonds would be broken, which result in the dissociation of SOF, and then the drugs would be released from the system. Furthermore, DOX@SOF enhanced cellular internalization. Both in vitro and in vivo experiments reflected that DOX@SOF could enhance the anti-tumor activity of DOX. for the MCF-7/ADR tumor cells and tumors. This study provides a highly efficient strategy to prepare a stimulus-responsive supramolecular drug delivery complex for the treatment of drug-resistant cancer, the results presented inspiring scientific interests in exploring new drug delivery strategies and reversing multi-drug resistance for clinical chemotherapy.


Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Doxorubicin/pharmacology , Drug Carriers/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Drug Liberation , Drug Resistance, Neoplasm , Female , Humans , Hydrogen-Ion Concentration , Mice, Inbred BALB C , Mice, Nude , Tumor Burden , Xenograft Model Antitumor Assays
4.
ACS Appl Bio Mater ; 4(5): 4591-4597, 2021 05 17.
Article En | MEDLINE | ID: mdl-35006796

A water-soluble flexible organic framework FOF-hz of low cytotoxicity has been synthesized from a pyridinium-derived tetracationic tetraaldehyde and a citric acid-derived tritopic acylhydrazine (1:2) through the formation of a hydrazone bond. Dynamic light-scattering experiments reveal that FOF-hz has a hydrodynamic diameter of 79 nm at 0.1 mM concentration of the tetrahedral precursor. Dialysis experiments show that the free acylhydrazine units of FOF-hz can react with the C-13 ketone units of anthracycle drugs, including doxorubicin (DOX), daunorubicin, epirubicin, and pirarubicin, at pH = 3.0 to conjugate the drugs in 78-85% yields. The resulting FOF-prodrugs exhibit remarkable acid-responsive deconjugation of the conjugated active agents. Laser confocal scanning microscopy and flow cytometric analysis support that FOF-hz displays enhanced permeability and retention effect, which helps to overcome the multidrug resistance of MCF-7/ADR tumor cells and leads to enhanced cytotoxicity for MCF-7/ADR cells. In vivo studies reveal a considerable improvement of the efficacy of the prodrug FOF-DOX for the inhibition of the growth of the MCF-7/ADR tumor.


Anthracyclines/pharmacology , Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Prodrugs/pharmacology , Anthracyclines/chemical synthesis , Anthracyclines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Materials Testing , Particle Size , Prodrugs/chemical synthesis , Prodrugs/chemistry
5.
Chempluschem ; 85(7): 1498-1503, 2020 Jul.
Article En | MEDLINE | ID: mdl-32644267

The self-assembly of a diamondoid woven supramolecular metal-organic framework wSMOF-1 has been achieved from intertwined [Ru(tpy)2 ]2+ (tpy=2,2',6',2''-terpyridine) complex M1 and cucurbit[8]uril (CB[8]) in water, where the intermolecular dimers formed by the appended aromatic arms of M1 are encapsulated in CB[8]. wSMOF-1 exhibits ordered pore periodicity in both water and the solid state, as confirmed by a combination of 1 H NMR spectroscopy, UV-vis absorption, isothermal titration calorimetry, dynamic light scattering, small angle X-ray scattering and selected area electron diffraction experiments. The woven framework has a pore aperture of 2.1 nm, which allows for the free access of both secondary and primary alcohols and tert-butyl hydroperoxide (TBHP). Compared with the control molecule [Ru(tpy)2 ]Cl2 , the [Ru(tpy)2 ]2+ unit of wSMOF-1 exhibits a remarkably higher heterogeneous catalysis activity for the oxidation of alcohols by TBHP in n-hexane. For the oxidation of 1-phenylethan-1-ol, the yield of acetophenone was increased from 10 % to 95 %.

7.
J Am Chem Soc ; 142(7): 3577-3582, 2020 02 19.
Article En | MEDLINE | ID: mdl-32011130

Four water-soluble hydrazone-based three-dimensional (3D) flexible organic frameworks FOF-1-4 have been synthesized from a semirigid tetracationic tetraaldehyde and four flexible dihydrazides. 1H NMR spectroscopy indicated the quantitative formation of FOF-1-4 in D2O, while dynamic light scattering experiments revealed that, depending on the concentration, these porous frameworks display hydrodynamic diameters ranging from 50 to 120 nm. The porosity of the frameworks is confirmed by ethanol vapor adsorption experiments of the solid samples as well as the high loading capacity for a 2.3 nm porphyrin guest in water. The new water-soluble frameworks exhibit low cytotoxicity and form inherent pores with diameters of 5.3 or 6.7 nm, allowing rapid inclusion of proteins such as bovine serum albumin and green and orange fluorescent proteins, and efficient delivery of the proteins into normal and cancer cells. Flow cytometric analysis reveals percentages of the delivered cells up to 99.8%.


Metal-Organic Frameworks/chemistry , Proteins/chemistry , Ethanol/chemistry , Hydrazones/chemistry , Nuclear Magnetic Resonance, Biomolecular , Scattering, Radiation , Solubility , Spectrophotometry, Infrared , Water/chemistry
8.
ACS Macro Lett ; 9(1): 90-95, 2020 Jan 21.
Article En | MEDLINE | ID: mdl-35638654

Two metal porous organic polymers (POPs) that contain the [Ru(bpy)3]2+ cores are prepared via one-pot Suzuki-Miyaura coupling reactions. Both Ru-POPs are thermally stable at up to 340 °C in air and do not dissolve in all solvents tested. One of the POPs has been revealed to be highly effective and reusable as a heterogeneous photocatalyst for visible light-driven enantioselective alkylation of aldehydes. After 10 cycles, the catalyst still maintains the enantioselectivity, while the activity just decreases slightly.

9.
Nat Commun ; 7: 11580, 2016 05 10.
Article En | MEDLINE | ID: mdl-27161853

Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3](2+)-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3](2+) units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.

10.
Chem Commun (Camb) ; 52(47): 7490-3, 2016 Jun 14.
Article En | MEDLINE | ID: mdl-27203526

A hydrogen bonded foldamer unit and an azobenzene unit have been incorporated into the linear component of a tristable [2]rotaxane to give rise to a doubly gated switching system tuned by the folding-defolding of the foldamer unit and the photo-initiated trans-cis isomerization of the azobenzene unit.

...