Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Chem Sci ; 15(30): 11837-11846, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092101

RESUMEN

Excellent ethylene selectivity in acetylene semi-hydrogenation is often obtained at the expense of activity. To break the activity-selectivity trade-off, precise control and in-depth understanding of the three-dimensional atomic structure of surfacial active sites are crucial. Here, we designed a novel Au@PdCu core-shell nanocatalyst featuring diluted and stretched Pd sites on the ultrathin shell (1.6 nm), which showed excellent reactivity and selectivity, with 100% acetylene conversion and 92.4% ethylene selectivity at 122 °C, and the corresponding activity was 3.3 times higher than that of the PdCu alloy. The atomic three-dimensional decoding for the activity-selectivity balance was revealed by combining pair distribution function (PDF) and reverse Monte Carlo simulation (RMC). The results demonstrate that a large number of active sites with a low coordination number of Pd-Pd pairs and an average 3.25% tensile strain are distributed on the surface of the nanocatalyst, which perform a pivotal function in the simultaneous improvement of hydrogenation activity and ethylene selectivity. Our work not only develops a novel strategy for unlocking the linear scaling relation in heterogeneous catalysis but also provides a paradigm for atomic 3D understanding of lattice strain in core-shell nanocatalysts.

2.
Front Immunol ; 15: 1378130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021570

RESUMEN

Brachio-cervical inflammatory myopathy (BCIM) is a rare inflammatory myopathy characterized by dysphagia, bilateral upper limb atrophy, limb-girdle muscle weakness, and myositis-specific antibody (MSA) negativity. BCIM has a low incidence and is commonly associated with autoimmune diseases. We present a case report of a 55-year-old man with progressive upper limb weakness and atrophy, diagnosed with flail arm syndrome (FAS). The initial electromyography revealed extensive spontaneous muscle activity and increased duration of motor unit potentials (MUPs). During follow-up, evidence of myogenic damage was observed, as indicated by a decreased duration of MUPs in the right biceps muscle. Laboratory and genetic testing ruled out hereditary or acquired diseases. Negative serological antibodies for myasthenia gravis. Hereditary or acquired diseases were ruled out through laboratory and genetic testing. Whole-body muscle magnetic resonance imaging (MRI) showed extensive edema and fat replacement in the bilateral upper limbs, scapular, and central axis muscles, while the lower extremities were relatively mildly affected. Muscle biopsy revealed numerous foci of inflammatory cells distributed throughout the muscle bundle, with predominant CD20, CD138, and CD68 expression, accompanied by a light infiltration of CD3 and CD4 expression. The muscle weakness improved with the combination of oral prednisone (initially 60 mg/day, tapered) and methotrexate (5 mg/week) treatment.


Asunto(s)
Errores Diagnósticos , Miositis , Humanos , Persona de Mediana Edad , Masculino , Miositis/diagnóstico , Miositis/inmunología , Brazo , Músculo Esquelético/patología , Músculo Esquelético/inmunología , Debilidad Muscular/diagnóstico , Debilidad Muscular/etiología , Atrofia Muscular/diagnóstico , Electromiografía , Imagen por Resonancia Magnética
3.
Food Res Int ; 190: 114607, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945617

RESUMEN

Salmonella, a prominent foodborne pathogen, has posed enduring challenges to the advancement of food safety and global public health. The escalating concern over antibiotic misuse, resulting in the excessive presence of drug residues in animal-derived food products, necessitates urgent exploration of alternative strategies for Salmonella control. Bacteriophages emerge as promising green biocontrol agents against pathogenic bacteria. This study delineates the identification of two novel virulent Salmonella phages, namely phage vB_SalS_ABTNLsp11241 (referred to as sp11241) and phage 8-19 (referred to as 8-19). Both phages exhibited efficient infectivity against Salmonella enterica serotype Enteritidis (SE). Furthermore, this study evaluated the effectiveness of two phages to control SE in three different foods (whole chicken eggs, raw chicken meat, and lettuce) at different MOIs (1, 100, and 10000) at 4°C. It's worth noting that sp11241 and 8-19 achieved complete elimination of SE on eggs after 3 h and 6 h at MOI = 100, and after 2 h and 5 h at MOI = 10000, respectively. After 12 h of treatment with sp11241, a maximum reduction of 3.17 log10 CFU/mL in SE was achieved on raw chicken meat, and a maximum reduction of 3.00 log10 CFU/mL was achieved on lettuce. Phage 8-19 has the same effect on lettuce as sp11241, but is slightly less effective than sp11241 on chicken meat (a maximum 2.69 log10 CFU/mL reduction). In conclusion, sp11241 and 8-19 exhibit considerable potential for controlling Salmonella contamination in food at a low temperature and represent viable candidates as green antibacterial agents for food applications.


Asunto(s)
Pollos , Huevos , Microbiología de Alimentos , Lactuca , Carne , Fagos de Salmonella , Salmonella enteritidis , Lactuca/microbiología , Animales , Huevos/microbiología , Huevos/virología , Pollos/microbiología , Salmonella enteritidis/virología , Carne/microbiología , Inocuidad de los Alimentos , Contaminación de Alimentos/prevención & control , Virulencia
4.
Materials (Basel) ; 17(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930237

RESUMEN

The robust electronegativity of the [BO3]3- structure enables the extraction of electrons from adjacent metals, offering a strategy for modulating oxygen activation in propane oxidative dehydrogenation. Metals (Ni 1.91, Al 1.5, and Ca 1.0) with varying electronegativities were employed to engineer borate catalysts. Metals in borate lacked intrinsic catalytic activity for propane conversion; instead, they modulated [BO3]3- group reactivity through adjustments in electron density. Moderate metal electronegativity favored propane oxidative dehydrogenation to propylene, whereas excessively low electronegativity led to propane overoxidation to carbon dioxide. Aluminum, with moderate electronegativity, demonstrated optimal performance. Catalyst AlBOx-1000 achieved a propane conversion of 47.5%, with the highest propylene yield of 30.89% at 550 °C, and a total olefin yield of 51.51% with a 58.92% propane conversion at 575 °C. Furthermore, the stable borate structure prevents boron element loss in harsh conditions and holds promise for industrial-scale catalysis.

5.
Nano Lett ; 24(21): 6269-6277, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743874

RESUMEN

Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.

6.
Small Methods ; : e2301657, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708670

RESUMEN

Memristor possesses great potential and advantages in neuromorphic computing, while consistency and power consumption issues have been hindering its commercialization. Low cost and accuracy are the advantages of human brain, so memristors can be used to construct brain-like synaptic devices to solve these problems. In this work, a five-layer AlOx device with a V-shaped oxygen distribution is used to simulate biological synapses. The device simulates synapse structurally. Further, under electrical stimulation, O2- moves to the Ti electrode and oxygen vacancy (Vo) moves to the Pt electrode, thus forming a conductive filament (CF), which simulates the Ca2+ flow and releases neurotransmitters to the postsynaptic membrane, thus realizing the transmission of information. By controlling applied voltage, the regulation of Ca2+ gated pathway is realized to control the Ca2+ internal flow and achieve different degrees of information transmission. Long-term Potentiation (LTP)/Long-term Depression (LTD), Spike Timing Dependent Plasticity (STDP), these basic synaptic performances can be simulated. The AlOx device realizes low power consumption (56.7 pJ/392 fJ), high switching speed (25 ns/60 ns), and by adjusting the window value, the nonlinearity is improved (0.133/0.084), a high recognition accuracy (98.18%) is obtained in neuromorphic simulation. It shows a great prospect in multi-value storage and neuromorphic computing.

7.
J Med Food ; 27(7): 669-680, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38682284

RESUMEN

Tao-Hong-Si-Wu-Tang (THSWT), a traditional Chinese herbal remedy, is commonly utilized for the treatment of female perimenopausal depression through regulating menstruation, but the mechanism remains unknown. In this study, ICR mice were randomly divided into six groups: low, medium, and high dose of THSWT (0.5, 1.5, and 4.5 g/kg), soy isoflavone (250 mg/kg), ovariectomy group, and control group. All mice, except the control group, had ovaries removed and were exposed to hypoxic stimulation for 28 days to establish a perimenopausal depression mice model. The mice, having unrestricted access to food and water, were administered THSWT treatment for a duration of 14 days. The Western blotting and Enzyme linked immunosorbent assay kits were used to determine protein and hormone levels, respectively. Experimental results showed that THSWT reduced the immobility time of mice from 150.8 s to 104.9 s in the tail suspension test, and it decreased the immobility time of mice from 165.7 s to 119.0 s in the forced swimming test, outperforming the results obtained with soy isoflavones. In addition, THSWT upregulated the protein expression of follicle-stimulating hormone receptor and downregulated the protein expression of corticotropin-releasing hormone-receptor 1 in the hippocampus. Compared with the oophorectomized group, treatment with THSWT decreased the levels of corticosterone and adrenocorticotropic hormone in serum by 173.7 and 23.4 ng/mL, respectively. These findings showed that THSWT could stimulate the perimenopausal nerve tissue and regulate the level of serum hormones in mice. THSWT exhibited promising potential as a viable alternative drug for hormone treatment of perimenopause in clinical use.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Depresión , Medicamentos Herbarios Chinos , Sistema Hipotálamo-Hipofisario , Ratones Endogámicos ICR , Ovario , Perimenopausia , Sistema Hipófiso-Suprarrenal , Transducción de Señal , Animales , Femenino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Perimenopausia/psicología , Perimenopausia/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Transducción de Señal/efectos de los fármacos , Ovario/metabolismo , Ovario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Humanos , Receptor trkB/metabolismo , Conducta Animal/efectos de los fármacos
8.
Ann Clin Transl Neurol ; 11(5): 1267-1279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38651547

RESUMEN

OBJECTIVE: The pathological features of immune-mediated necrotizing myopathy (IMNM) are dominated by the infiltration of macrophages. We aimed to perform a histopathologic semiquantitative analysis to investigate the relationship between macrophage markers and prognosis. METHODS: Semiquantitative analysis of histologic features was performed in 62 samples of IMNM. Independent risk factors were identified through univariate and multivariate regression analysis. Cluster analysis was performed using the partitioning around the medoids (PAM) method. Decision tree modeling was utilized to efficiently determine cluster labels for IMNM patients. The validity of the developmental cohort was assessed by accuracy in comparison with the validation cohort. RESULTS: The most enriched groups in patients with IMNM were macrophages expressing CD206 and CD163. In the multivariate logistic regression model, the high density of CD163+ macrophages in perimysial connective tissue increased the risk of unfavorable prognosis (p = 0.025, OR = 1.463, 95% CI: 1.049-2.041). In cluster analysis, patients in Cluster 1, with lower CD163+ macrophage density and inflammatory burden, had a more favorable prognosis. Conversely, patients in Cluster 3, which were enriched for CD163+ macrophages in the perimysial connective tissue, had the most severe clinical features and the worst prognosis. Correlations were found between the density of CD163+ macrophages in connective tissue and symptom duration (R2 = 0.166, p < 0.001), dysphagia (p = 0.004), cardiac involvement (p = 0.021), CK (R2 = 0.067, p = 0.042), CRP (R2 = 0.117, p < 0.001), and ESR (R2 = 0.171, p < 0.001). CONCLUSION: The density of CD163+ macrophages in perimysial connective tissue may serve as a potential marker for the prediction of IMNM prognosis.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Tejido Conectivo , Macrófagos , Receptores de Superficie Celular , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Tejido Conectivo/patología , Tejido Conectivo/inmunología , Macrófagos/patología , Macrófagos/inmunología , Miositis/patología , Miositis/inmunología , Pronóstico , Receptores de Superficie Celular/metabolismo
9.
Bioorg Chem ; 145: 107241, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437761

RESUMEN

The discovery of new small molecule-based inhibitors is an attractive field in medicinal chemistry. Structurally diversified heterocyclic derivatives have been investigated to combat multi-drug resistant bacterial infections and they offers several mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming more and more deadly to humans because of its simple method of transmission, quick development of antibiotic resistance, and ability to cause hard-to-treat skin and filmy diseases. The sulfur (SVI) particularly sulfonyl and sulfonamide based heterocyclic moieties, have found to be good anti-MRSA agents. The development of new nontoxic, economical and highly active sulfur (SVI) containing derivatives has become hot research topics in drug discovery research. Presently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with different therapeutic potential. The present collective data provides the latest advancements in Sulfur (SVI)-hybrid compounds as antibacterial agents against MRSA. It also examines the outcomes of in-vitro and in-vivo investigations, exploring potential mechanisms of action and offering alternative perspectives on the structure-activity relationship (SAR). Sulfur (SVI)-hybrids exhibits synergistic effects with existing drugs to provide antibacterial action against MRSA.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Azufre/farmacología
11.
Diabetologia ; 67(6): 1138-1154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489029

RESUMEN

AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.


Asunto(s)
Permeabilidad Capilar , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Animales , Vesículas Extracelulares/metabolismo , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Masculino , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Proteómica , Ratones Endogámicos C57BL
12.
Nat Commun ; 15(1): 1037, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310100

RESUMEN

Liver failure causes breakdown of the Blood CNS Barrier (BCB) leading to damages of the Central-Nervous-System (CNS), however the mechanisms whereby the liver influences BCB-integrity remain elusive. One possibility is that the liver secretes an as-yet to be identified molecule(s) that circulate in the serum to directly promote BCB-integrity. To study BCB-integrity, we developed light-sheet imaging for three-dimensional analysis. We show that liver- or muscle-specific knockout of Hfe2/Rgmc induces BCB-breakdown, leading to accumulation of toxic-blood-derived fibrinogen in the brain, lower cortical neuron numbers, and behavioral deficits in mice. Soluble HFE2 competes with its homologue RGMa for binding to Neogenin, thereby blocking RGMa-induced downregulation of PDGF-B and Claudin-5 in endothelial cells, triggering BCB-disruption. HFE2 administration in female mice with experimental autoimmune encephalomyelitis, a model for multiple sclerosis, prevented paralysis and immune cell infiltration by inhibiting RGMa-mediated BCB alteration. This study has implications for the pathogenesis and potential treatment of diseases associated with BCB-dysfunction.


Asunto(s)
Barrera Hematoencefálica , Encefalomielitis Autoinmune Experimental , Animales , Femenino , Ratones , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Hígado/metabolismo , Músculos/metabolismo
13.
J Neurol ; 271(5): 2238-2257, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38367047

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron degeneration. The development of ALS involves metabolite alterations leading to tissue lesions in the nervous system. Recent advances in neuroimaging have significantly improved our understanding of the underlying pathophysiology of ALS, with findings supporting the corticoefferent axonal disease progression theory. Current studies on neuroimaging in ALS have demonstrated inconsistencies, which may be due to small sample sizes, insufficient statistical power, overinterpretation of findings, and the inherent heterogeneity of ALS. Deriving meaningful conclusions solely from individual imaging metrics in ALS studies remains challenging, and integrating multimodal imaging techniques shows promise for detecting valuable ALS biomarkers. In addition to giving an overview of the principles and techniques of different neuroimaging modalities, this review describes the potential of neuroimaging biomarkers in the diagnosis and prognostication of ALS. We provide an insight into the underlying pathology, highlighting the need for standardized protocols and multicenter collaborations to advance ALS research.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Neuroimagen , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Neuroimagen/métodos , Neuroimagen/normas , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
14.
Biomol Biomed ; 24(1): 73-81, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-37435641

RESUMEN

The aim of this study was to screen potential susceptibility genes using whole-exome sequencing (WES) in 15 Han Chinese patients with stage III or IV periodontitis and to evaluate the quantity and quality of genomic DNA extracted from saliva. DNA was extracted from saliva epithelial cells, quality-tested, and then subjected to WES and bioinformatics analyses. All variation loci were analyzed and interpreted following the American College of Medical Genetics and Genomics (ACMG) criteria. Candidate pathogenic variation loci were identified and verified using Sanger sequencing. Correlation and functional analyses of the candidate genes were used to identify potential susceptibility genes in patients with severe periodontitis. LFNG, LENG8, NPHS1, HFE, ILDR1, and DMXL2 genes were identified in over two cases each with shared mutations. Following these analyses, the DMXL2 gene was identified as being associated with stage III and IV periodontitis. These results suggest a potential pathophysiological risk mechanism for periodontitis, but need to be verified through larger clinical studies and mechanistic experiments to determine the pathogenicity of these gene mutations and their generalizability to a wider population of periodontitis patients. By screening candidate pathogenic variation loci using WES in 15 Han Chinese patients with stage III or IV periodontitis, our study could provide a pipeline and feasibility support for the identification of susceptibility genes in patients with stage III and IV periodontitis.


Asunto(s)
ADN , Exoma , Humanos , Proyectos Piloto , Secuenciación del Exoma , Exoma/genética , Mutación/genética
15.
World J Pediatr ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38070096

RESUMEN

BACKGROUND: The aim of this study was to characterize the variable phenotypes and outcomes associated with the methylmalonic aciduria and homocystinuria type C protein gene (MMACHC) c.482G > A mutation in 195 Chinese cases with CblC disease. METHODS: We carried out a national, retrospective multicenter study of 195 Chinese patients with CblC disease attributable to the MMACHC c.482G > A variant either in a homozygous or compound heterozygous state. The control group consisted of 200 patients diagnosed with CblC disease who did not possess the c.482G > A mutation. Clinical features, including disease onset, symptoms, biochemical metabolites, gene mutation, and follow-up outcomes were reviewed and analyzed in detail. The median follow-up period spanned 3 years and 8 months, with a range of 1 year and 2 months to 12 years and 10 months. RESULTS: Among 195 patients carrying the c.482G > A variant, 125 (64.1%) cases were diagnosed by newborn screening (NBS), 60 (30.8%) cases were detected due to disease onset, and 10 (5.1%) cases were identified from sibling diagnoses. One hundred and seventeen (93.6%) individuals who were diagnosed by NBS, and nine patients who came from sibling diagnoses remained asymptomatic in this study. From 69 symptomatic patients of the c.482G > A group, more patients presented with later onset, and the top six common clinical symptoms at disease onset were developmental delay (59.4%), lower limb weakness and poor exercise tolerance (50.7%), cognitive decline (37.7%), gait instability and abnormal posture (36.2%), seizures (26.1%), and psychiatric and behavioral disturbances (24.6%). In the 159 symptomatic patients lacking c.482G > A variants, the most frequently observed clinical manifestations at disease onset included developmental delay (81.8%), lethargy and feeding difficulty (62.9%), lower limb weakness and poor exercise tolerance (54.7%), prolonged neonatal jaundice (51.6%), vomiting (47.2%), and seizures (32.7%). Before treatment, the levels of blood propionylcarnitine, propionylcarnitine/acetylcarnitine ratio, and homocysteine in the c.482G > A group were significantly lower (P < 0.05) than those in the non-c.482G > A group, while the concentration of urinary methylmalonic acid was slightly lower (P > 0.05). The degree of decline in the above metabolites after treatment in different groups significantly differed in both plasma total homocysteine values and urinary methylmalonic acid levels (P < 0.05). In patients carrying the c.482G > A variant compared with the non-c.428G > A group, there were markedly lower rates of mortality (0.5% vs. 2.0%) and developmental delay (20.5% vs. 65.5%). When compared with individuals diagnosed due to disease onset, those identified through NBS in either group exhibited a reduced proportion of disease onset (6.7% vs. 100% in the c.482G > A group, 54.4% vs. 100% in the non-c.482G > A group), lower mortality (0.0% vs. 1.7% in the c.482G > A group, 0.0% vs. 3.6% in the non-c.482G > A group), and had a higher percentage of patients exhibiting normal psychomotor and language development (99.3% vs. 33.3% in the c.482G > A group, 58.9% vs. 10.9% in the non-c.482G > A group). CONCLUSIONS: The c.482G > A variant in MMACHC is associated with late-onset and milder phenotypes of CblC disease. Patients with this mutation tend to have a relatively better response to hydroxocobalamin, better metabolic control, and more favorable neurological outcomes. NBS and other appropriate pre-symptomatic treatments seem to be helpful in early diagnosis, resulting in favorable clinical outcomes. Video Abstract (MP4 136794 kb).

16.
J Am Chem Soc ; 145(49): 26728-26735, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38015199

RESUMEN

Deciphering the three-dimensional (3D) insight into nanocatalyst surfaces at the atomic level is crucial to understanding catalytic reaction mechanisms and developing high-performance catalysts. Nevertheless, better understanding the inherent insufficiency of a long-range ordered lattice in nanocatalysts is a big challenge. In this work, we report the local structure of Pd nanocatalysts, which is beneficial for demonstrating the shape-structure-adsorption relationship in acetylene hydrogenation. The 5.27 nm spherical Pd catalyst (Pdsph) shows an ethylene selectivity of 88% at complete acetylene conversion, which is much higher than those of the Pd octahedron and Pd cube and superior to other reported monometallic Pd nanocatalysts so far. By virtue of the local structure revelation combined with the atomic pair distribution function (PDF) and reverse Monte Carlo (RMC) simulation, the atomic surface distribution of the unique compressed strain of Pd-Pd pairs in Pdsph was revealed. Density functional theory calculations verified the obvious weakening of the ethylene adsorption energy on account of the surface strain of Pdsph. It is the main factor to avoid the over-hydrogenation of acetylene. The present work, entailing shape-induced surface strain manipulation and atomic 3D insight, opens a new path to understand and optimize chemical activity and selectivity in the heterogeneous catalysis process.

17.
Heliyon ; 9(9): e19907, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809868

RESUMEN

Background: Laryngeal squamous cell carcinoma (LSCC) is a kind of common and aggressive tumor with high mortality. The application of molecular biomarkers is useful for the early diagnosis and treatment of LSCC. Methods: The expression and clinical information were obtained from The Cancer Genome Atlas (TCGA) database. Principal components analysis (PCA) was used to discriminate between LSCC and normal samples. The hub genes were screened out through univariate and multivariate cox analyses. The Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve was used to validate the predictive performance. The single sample gene set enrichment analysis (ssGSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to determine the enrichment function. Protein-Protein Interaction (PPI) network was constructed in STRING. The immune analysis was performed by ESTIMATE, IPS and xCELL. The drug sensitivity was identified with GSCA database. Results: We identified that 47 extracellular matrix (ECM) genes were differentially expressed in LSCC compared with normal group. Univariate and multivariate cox analysis determined that leucine-rich glioma-inactivated 4 (LGI4), matrilin 4 (MATN4), microfibrillar-associated protein 2 (MFAP2) and fibrinogen like 2 (FGL2) were closely related to the disease free survival (DSS) of LSCC. ROC curve determined that the risk model has a good predictive performance. PPI network showed the top 100 genes with high correlation of hub genes. The ssGSEA, GO and KEGG enrichment analyses determined that immune response was significantly involved in the development of LSCC. Immune infiltration analysis showed that most immune cells and immune checkpoints were inhibited in high risk score group. Drug sensitivity analysis showed that MATN4, FGL2 and LGI4 were negatively related to various drugs, while MFAP2 was positively related to many drugs. Conclusion: We established a risk model constructed with four ECM-related genes, which could effectively predict the prognosis of LSCC.

18.
Life Sci ; 332: 122105, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739166

RESUMEN

AIMS: The gut microbiota has been found to be altered in different inflammatory disorders, but its involvement in the regulation of inflammatory cytokines remains unclear. Therefore, this study aimed to investigate the impacts of gut microbiota on circulating inflammatory cytokines and their potential roles in host diseases. MAIN METHODS: Two-sample Mendelian randomization (MR) analyses were conducted using summary-level data from genome-wide association studies (GWAS) to identify significant causal associations between 196 gut microbiota and 41 inflammatory cytokines. Meta-analysis was applied to test the robustness of the results. Enrichment analyses of identified cytokines were further utilized to infer the effects of gut microbiota on the host. KEY FINDINGS: The MR analyses and meta-analyses identified the following significant causal associations: phylum Euryarchaeota on interleukin-2 (IL-2) (ßIVW = 0.085, P = 1.5 × 10-2) and interleukin-8 (IL-8) (ßIVW = 0.065, P = 4.1 × 10-2), phylum Tenericutes and class Mollicutes on macrophage inflammatory protein 1a (MIP1a) (ßIVW = -0.142, P = 7.0 × 10-3), class Bacilli on hepatocyte growth factor (HGF) (ßIVW = -0.106, P = 2.5 × 10-2), order Enterobacteriales on monocyte chemoattractant protein-1 (MCP1) (ßIVW = 0.182, P = 1.8 × 10-2), and genus Lachnospiraceae NC2004 group on TNF-related apoptosis-inducing ligand (TRAIL) (ßIVW = -0.207, P = 6.0 × 10-4). Enrichment analyses suggested that phylum Euryarchaeota and order Enterobacteriales might be risk factors for certain autoimmune diseases and neoplasms, while the phylum Tenericutes may have a protective effect. SIGNIFICANCE: This study represents the first evidence confirming the causal effect of specific gut microbial taxa on circulating inflammatory cytokines and sheds light on their potential roles in the development and progression of various host diseases.

19.
Dalton Trans ; 52(25): 8530-8535, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37306008

RESUMEN

Metallic phase (1T) MoS2 has been regarded as an ideal catalytic material for the hydrogen evolution reaction (HER) due to its high active site density and favorable electrical conductivity. However, the preparation of 1T-phase MoS2 samples requires tough reaction conditions and 1T-MoS2 has poor stability under alkaline conditions. In this work, 1T-MoS2/NiS heterostructure catalysts grown in situ on carbon cloth were prepared by a simple one-step hydrothermal method. The obtained MoS2/NiS/CC combines the advantages of high active site density and a self-supporting structure, achieving stable 77% metal phase (1T) MoS2. The combination of NiS and 1T-MoS2 enhances the intrinsic activity of MoS2 while the electrical conductivity is improved. These advantages enable the 1T-MoS2/NiS/CC electrocatalyst to have a low overpotential of 89 mV (@10 mA cm-2) and a small Tafel slope of 75 mV dec-1 under alkaline conditions and provide a synthetic strategy of stable 1T-MoS2-based electrocatalysts for the HER by a heterogeneous structure.

20.
Huan Jing Ke Xue ; 44(5): 2756-2766, 2023 May 08.
Artículo en Chino | MEDLINE | ID: mdl-37177948

RESUMEN

The aim of this study was to analyze the carbon sink effect under natural vegetation restoration and the influence of changes in vegetation community characteristics on ecosystem carbon density in ecologically fragile areas of the Loess Plateau. In this study, the changes in carbon sequestration of a vegetation-soil system under eight successional stages[slope cropland, abandoned cropland for 10 years, abandoned cropland for 20 years, Sophora davidii (Franch.) Skeels., Betula platyphylla Suk., Pinus tabulaeformis Carr., Quercus wutaishanic Mary+P. tabulaeformis Carr mixed forests, and Q. wutaishanic Mary] in Ziwuling area over 150 restoration periods were investigated using the common method of spatial and temporal substitution. This study also discussed the relationship between changes in vegetation community characteristics and vegetation-soil system carbon density. The results showed that the community coverage of the investigated vegetation fluctuated from 85% in the slope cropland stage to 100% in the arbor stage. The number of species, Margalef index, Shannon-Wiener index, Pielou index, and Simpson index initially increased rapidly, then declined slowly until becoming stable, and reached a peak in the middle of the succession (B. platyphylla Suk.). The biomass and carbon density of vegetation components (above-ground biomass, below-ground roots, and litter) increased exponentially during the succession, i.e., increased slowly before B. platyphylla Suk. but increased significantly in B. platyphylla Suk. and P. tabulaeformis Carr.(P<0.05). The biomass and carbon density reached the maximum values of 27858.08 g·m-2 and 13232.51 g·m-2, respectively, in Q. wutaishanic Mary+P. tabulaeformis Carr mixed forests and tended to be stable in the late succession stage. Soil organic carbon density showed a power function relationship with vegetation restoration, with the greatest increase in the stages of abandoned cropland for 10 years and B. platyphylla, but no significant changes in the subsequent stages (P>0.05). In the early succession stage, the carbon density of the farmland ecosystem was the lowest (4395.70 g·m-2), whereas the other seven stages increased by 55.54%, 40.37%, 69.96%, 202.48%, 326.35%, 357.43%, and 351.07%, respectively, compared with the farmland ecosystem. Community coverage, Margalef index, Shannon-Wiener index, above-ground biomass, root biomass, and litter biomass were significantly positively correlated with vegetation-soil system carbon density (P<0.05). The carbon sink effect of long-term natural restoration in Ziwuling Region was significant, and the carbon density of the vegetation-soil system under interspecific competition tended to be stable in the late succession stage. Dynamic changes in the vegetation community structure and plant diversity during the succession process increased vegetation carbon density and soil carbon density. This study helps to clarify the carbon sink effect of natural vegetation restoration in ecologically fragile areas of the Loess Plateau and provides a theoretical basis for promoting natural forest conservation and achieving carbon neutrality.


Asunto(s)
Secuestro de Carbono , Ecosistema , Carbono/análisis , Suelo/química , Bosques , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA