Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsyst Nanoeng ; 9: 79, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313471

RESUMEN

Noninvasive brain-computer interfaces (BCIs) show great potential in applications including sleep monitoring, fatigue alerts, neurofeedback training, etc. While noninvasive BCIs do not impose any procedural risk to users (as opposed to invasive BCIs), the acquisition of high-quality electroencephalograms (EEGs) in the long term has been challenging due to the limitations of current electrodes. Herein, we developed a semidry double-layer hydrogel electrode that not only records EEG signals at a resolution comparable to that of wet electrodes but is also able to withstand up to 12 h of continuous EEG acquisition. The electrode comprises dual hydrogel layers: a conductive layer that features high conductivity, low skin-contact impedance, and high robustness; and an adhesive layer that can bond to glass or plastic substrates to reduce motion artifacts in wearing conditions. Water retention in the hydrogel is stable, and the measured skin-contact impedance of the hydrogel electrode is comparable to that of wet electrodes (conductive paste) and drastically lower than that of dry electrodes (metal pin). Cytotoxicity and skin irritation tests show that the hydrogel electrode has excellent biocompatibility. Finally, the developed hydrogel electrode was evaluated in both N170 and P300 event-related potential (ERP) tests on human volunteers. The hydrogel electrode captured the expected ERP waveforms in both the N170 and P300 tests, showing similarities in the waveforms generated by wet electrodes. In contrast, dry electrodes fail to detect the triggered potential due to low signal quality. In addition, our hydrogel electrode can acquire EEG for up to 12 h and is ready for recycled use (7-day tests). Altogether, the results suggest that our semidry double-layer hydrogel electrodes are able to detect ERPs in the long term in an easy-to-use fashion, potentially opening up numerous applications in real-life scenarios for noninvasive BCI.

2.
Virology ; 446(1-2): 86-94, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24074570

RESUMEN

HIV CRF07 B'/C is a strain circulating mainly in northwest region of China. The gp41 region of CRF07 is derived from a clade C virus. In order to compare the difference of CRF07 gp41 with that of typical clade B virus, we solved the crystal structure of the core region of CRF07 gp41. Compared with clade B gp41, CRF07 gp41 evolved more basic and hydrophilic residues on its helix bundle surface. Based on sequence alignment, a hyper-mutant cluster located in the middle of HR2 heptads repeat was identified. The mutational study of these residues revealed that this site is important in HIV mediated cell-cell fusion and plays critical roles in conformational changes during viral invasion.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/metabolismo , VIH-1/química , VIH-1/fisiología , Mutación , Internalización del Virus , Aminoácidos/genética , Fusión Celular , China , Cristalografía por Rayos X , Análisis Mutacional de ADN , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...