Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
ACS Omega ; 9(26): 28866-28878, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973832

RESUMEN

To enable rapid and accurate point-of-care DNA detection, we have developed a single-step, amplification-free nucleic acid detection platform, a DNA substrate-mediated autocatalysis of CRISPR/Cas12a (DSAC). DSAC makes use of the trans-cleavage activity of Cas12a and target template-activated DNA substrate for dual signal amplifications. DSAC employs two distinct DNA substrate types: one that enhances signal amplification and the other that negatively modulates fluorescent signals. The positive inducer utilizes nicked- or loop-based DNA substrates to activate CRISPR/Cas12a, initiating trans-cleavage activity in a positive feedback loop, ultimately amplifying the fluorescent signals. The negative modulator, which involves competitor-based DNA substrates, competes with the probes for trans-cleaving, resulting in a signal decline in the presence of target DNA. These DNA substrate-based DSAC systems were adapted to fluorescence-based and paper-based lateral flow strip detection platforms. Our DSAC system accurately detected African swine fever virus (ASFV) in swine's blood samples at femtomolar sensitivity within 20 min. In contrast to the existing amplification-free CRISPR/Dx platforms, DSAC offers a cost-effective and straightforward detection method, requiring only the addition of a rationally designed DNA oligonucleotide. Notably, a common ASFV sequence-encoded DNA substrate can be directly applied to detect human nucleic acids through a dual crRNA targeting system. Consequently, our single-step DSAC system presents an alternative point-of-care diagnostic tool for the sensitive, accurate, and timely diagnosis of viral infections with potential applicability to human disease detection.

2.
ACS Appl Bio Mater ; 7(5): 3295-3305, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38701399

RESUMEN

Physicochemical properties of nanoparticles, such as particle size, surface charge, and particle shape, have a significant impact on cell activities. However, the effects of surface functionalization of nanoparticles with small chemical groups on stem cell behavior and function remain understudied. Herein, we incorporated different chemical functional groups (amino, DETA, hydroxyl, phosphate, and sulfonate with charges of +9.5, + 21.7, -14.1, -25.6, and -37.7, respectively) to the surface of inorganic silica nanoparticles. To trace their effects on mesenchymal stem cells (MSCs) of rat bone marrow, these functionalized silica nanoparticles were used to encapsulate Rhodamine B fluorophore dye. We found that surface functionalization with positively charged and short-chain chemical groups facilitates cell internalization and retention of nanoparticles in MSCs. The endocytic pathway differed among functionalized nanoparticles when tested with ion-channel inhibitors. Negatively charged nanoparticles mainly use lysosomal exocytosis to exit cells, while positively charged nanoparticles can undergo endosomal escape to avoid scavenging. The cytotoxic profiles of these functionalized silica nanoparticles are still within acceptable limits and tolerable. They exerted subtle effects on the actin cytoskeleton and migration ability. Last, phosphate-functionalized nanoparticles upregulate osteogenesis-related genes and induce osteoblast-like morphology, implying that it can direct MSCs lineage specification for bone tissue engineering. Our study provides insights into the rational design of biomaterials for effective drug delivery and regenerative medicine.


Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales , Células Madre Mesenquimatosas , Nanopartículas , Tamaño de la Partícula , Dióxido de Silicio , Propiedades de Superficie , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Nanopartículas/química , Animales , Ratas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Osteogénesis/efectos de los fármacos
3.
Front Cell Infect Microbiol ; 14: 1374775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803568

RESUMEN

Background: Multiple studies have suggested a possible connection between the gut microbiota and the development of lymphoma, though the exact nature of this relationship remains unclear. This study aimed to explore whether a causal association exists between gut microbiota and lymphoma. Methods: A bidirectional two-sample Mendelian randomization (MR) approach was conducted to investigate potential causal effects between gut microbiota and various lymphoma subtypes. The primary method employed for MR analysis was inverse variance weighted (IVW), supplemented by additional methods including MR-Egger, weighted median, and weighted mode approaches. The Cochrane Q test, MR-PRESSO global test and MR-Egger intercept test were performed to assess pleiotropy and heterogeneity. Furthermore, a reverse MR analysis was performed to explore potential reverse causal effect. Results: The primary MR analysis identified 36 causal relationships between genetic liabilities in gut microbiota and different lymphoma subtypes. Neither the MR-PRESSO test nor the MR-Egger regression detected any pleiotropy, and Cochran's Q test indicated no significant heterogeneity. Conclusions: Our MR analysis revealed substantial causal associations between gut microbiota and lymphoma, offering new insights into lymphoma prevention and management microbiota.


Asunto(s)
Microbioma Gastrointestinal , Linfoma , Análisis de la Aleatorización Mendeliana , Microbioma Gastrointestinal/genética , Humanos
4.
Heliyon ; 10(5): e26731, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486772

RESUMEN

Deficiency in regulatory T cells (Tregs) is an important mechanism underlying the pathogenesis of pediatric aplastic anemia, but its specific mechanism is unclear. In our study, we aimed to investigate whether IL-2/STAT5 can regulate the proliferation of Tregs in aplastic anemia (AA) by regulating their expression of B lymphocyte-induced mature protein-1 (BLIMP-1) or interferon regulatory factor 4 (IRF4). Through clinical research and animal experiments, we found that poor activation of the IL-2/STAT5 signaling pathway may leads to low expression of BLIMP-1 in Tregs of children with AA, which leads to defects in the differentiation and proliferation of Tregs in AA. In AA model mice, treatment with IL-2c reversed the decrease in Treg proportions and reduction in Blimp-1 expression in Tregs by increasing the phosphorylation of Stat5 in Tregs. In AA, deficiency of IRF4 expression in Tregs is closely related to the deficiency of Tregs, but is not regulated by the IL-2/STAT5 pathway.

5.
Mol Biotechnol ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123749

RESUMEN

The shared mechanisms between pediatric acute lymphoblastic leukaemia (ALL) and pediatric sepsis are currently unclear. This study was aimed to explore the shared key genes of pediatric ALL and pediatric sepsis. The datasets involved were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between disease and control samples in GSE13904 and GSE79533 were intersected. The least absolute shrinkage and selection operator (LASSO) and the boruta analyses were performed in GSE13904 and GSE79533 separately based on shared DEGs, and shared key genes were obtained by taking the intersection of sepsis-related key genes and ALL-related key genes. Three shared key genes (HCK, NOG, RNF125) were obtained, that have a good diagnostic value for both sepsis and ALL. The correlation between shared key genes and differentially expressed immune cells was higher in GSE13904 and conversely, the correlation of which was lower in GSE79533. Suggesting that the sharing key genes had a different impact on the immune environment in pediatric ALL and pediatric sepsis. We make the case that this study provides a new perspective to study the relationship between pediatric ALL and pediatric sepsis.

6.
Front Oncol ; 13: 1280192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033488

RESUMEN

Background: Acute myeloid leukemia (AML) is a malignant disease originating from myeloid hematopoietic stem cells. Recent studies have shown that certain gene mutations promote tumor cell survival and affect the prognosis of patients by affecting metabolic mechanisms in tumor cells. RAS gene mutations are prevalent in AML, and the RAS signaling pathway is closely related to many metabolic pathways. However, the effects of different RAS gene mutations on AML cell metabolism are unclear. Objectives: The main purpose of this study was to explore the effect of RAS gene mutation on the metabolic pathway of tumor cells. Methods: In this study, we first used a retrovirus carrying a mutant gene to prepare Ba/F3 cell lines with RAS gene mutations, and then compared full-transcriptome data of Ba/F3 cells before and after RAS gene mutation and found that differentially expressed genes after NRASQ61K and KRASG12V mutation. Results: We found a total of 1899 differentially expressed genes after NRASQ61K and KRASG12V mutation. 1089 of these genes were involved in metabolic processes, of which 167 genes were enriched in metabolism-related pathways. In metabolism-related pathways, differential genes were associated with the lipid metabolism pathway. Moreover, by comparing groups, we found that the expression of the DGKzeta and PLA2G4A genes in the glycerophospholipid metabolism pathway was significantly upregulated. Conclusion: In conclusion, our study revealed that RAS gene mutation is closely related to the glycerophospholipid metabolism pathway in Ba/F3 cells, which may contribute to new precision therapy strategies and the development and application of new therapeutic drugs for AML.

7.
Front Pediatr ; 11: 1160929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181421

RESUMEN

Objective: To summarize the clinical characteristics of children with hematological malignancies co-infected with novel coronavirus and explore the safety and effectiveness of Paxlovid treatment. Methods: From December 10, 2022, to January 20, 2023, the clinical data of children with hematological diseases diagnosed with novel coronavirus infection in the outpatient and emergency department of the Seventh Affiliated Hospital of Sun Yat-sen University were retrospectively analyzed. Results: According to whether to give paxlovid or not, it is divided into group A (paxlovid group) and group B (non-paxlovid group). The length of fever was 1-6 days in group A and 0-3 days in group B. The viral clearance time was shorter in group A than in group B. The inflammatory indexes CRP and PCT were significantly higher in group A than in group B (P < 0.05). Twenty patients were followed up for 1 month after leaving the hospital, and there were 5 cases of reappearance of fever, 1 case of increased sleep, 1 case of physical fatigue and 1 case of loss of appetite within 2 weeks. Conclusions: Paxlovid has no apparent adverse reactions in children 12 years old and younger with underlying hematological diseases infected with the new coronavirus. Focusing on the interaction between paxlovid and other drugs is necessary during the treatment.

8.
Biochem Pharmacol ; 213: 115588, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37187274

RESUMEN

Leukemogenic SHP2 mutations occur in 35% of patients with juvenile myelomonocytic leukemia (JMML), a hematopoietic malignancy with poor response to cytotoxic chemotherapy. Novel therapeutic strategies are urgently needed for patients with JMML. Previously, we established a novel cell model of JMML with HCD-57, a murine erythroleukemia cell line that depends on EPO for survival. SHP2-D61Y or -E76K drove the survival and proliferation of HCD-57 in absence of EPO. In this study, we identified sunitinib as a potent compound to inhibit SHP2-mutant cells by screening a kinase inhibitor library with our model. We used cell viability assay, colony formation assay, flow cytometry, immunoblotting, and a xenograft model to evaluate the effect of sunitinib against SHP2-mutant leukemia cells in vitro and in vivo. The treatment of sunitinib selectively induced apoptosis and cell cycle arrest in mutant SHP2-transformed HCD-57, but not parental cells. It also inhibited cell viability and colony formation of primary JMML cells with mutant SHP2, but not bone marrow mononuclear cells from healthy donors. Immunoblotting showed that the treatment of sunitinib blocked the aberrantly activated signals of mutant SHP2 with deceased phosphorylation levels of SHP2, ERK, and AKT. Furthermore, sunitinib effectively reduced tumor burdens of immune-deficient mice engrafted with mutant-SHP2 transformed HCD-57. Our data demonstrated that sunitinib selectively inhibited SHP2-mutant leukemia cells, which could serve as an effective therapeutic strategy for SHP2-mutant JMML in the future.


Asunto(s)
Antineoplásicos , Leucemia Mielomonocítica Juvenil , Animales , Humanos , Ratones , Leucemia Mielomonocítica Juvenil/tratamiento farmacológico , Leucemia Mielomonocítica Juvenil/genética , Sunitinib/farmacología , Sunitinib/uso terapéutico , Transducción de Señal , Mutación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
9.
Small Methods ; 7(7): e2300230, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37096886

RESUMEN

Previous studies have found that activated CD8+ T cells secrete elevated levels of interferon-gamma (IFN-γ) to trigger ferroptosis in tumor cells. However, IFN-γ-mediated ferroptosis is induced at low levels in tumor cells because of the limited IFN-γ secreted by CD8+ T cells in the immunosuppressive tumor microenvironment. Recent studies have shown that manganese ion can activate the cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase/stimulator of interferon genes (cGAS-STING) pathway and support adaptive immune responses against tumors, which enhances the level of tumor-infiltrating CD8+ T cells. Therefore, tumor microenvironment-responsive Mn-based nanoenzymes (Mn-based NEs) that activated the cGAS-STING pathway are designed to amplify immune-driven ferroptosis. The multifunctional all-in-one nanoplatform is simply and mildly synthesized by the coordination between Mn3+ ions and 3,3'-dithiodipropionic acid. After intracellular delivery, each component of Mn-based NEs exerts its function. That is, glutathione is depleted through disulfide-thiol exchange and redox pair of Mn3+ /Mn2+ , a hydroxyl radical (·OH) is generated via the Fenton-like reaction to cause ferroptosis, and Mn2+ augments cGAS-STING activity to boost immune-driven ferroptosis. In addition, ferroptosis amplifies Mn2+ -induced immunogenic cell death and initiates the antitumor immune "closed loop" along with immune-driven ferroptosis. Notably, this multifunctional nanoplatform is effective in killing both primary and distant tumors.


Asunto(s)
Ferroptosis , Neoplasias , Manganeso , Linfocitos T CD8-positivos , Medicina de Precisión , Microambiente Tumoral , Interferón gamma , Cromogranina A
10.
Thromb Res ; 223: 131-138, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746103

RESUMEN

BACKGROUND AND OBJECTIVE: Essential thrombocythemia (ET) is a rare myeloproliferative malignancy which may lead to severe thrombohemorrhagic complications. The diagnosis of ET is primarily based on bone marrow morphology and exclusion of other possibilities of myeloproliferative neoplastic diseases; the lack of gene biomarkers fails to provide a prompt diagnosis of ET. Therefore, this study was designed to identify biomarkers for early ET diagnosis, especially that associated with immune cell infiltration, by using the Gene Expression Omnibus (GEO) database and machine-learning algorithms. METHODS: Two publicly available gene expression profiles (GSE9827 and GSE123732) from the GEO database were used to identify the differentially expressed genes (DEGs) between bone marrow samples of ET patients and healthy individuals, and functional enrichment analyses were conducted. The least absolute shrinkage and selection operator (LASSO) regression model and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine-learning algorithm were performed to select the candidate gene biomarker. The expression level and diagnostic effectiveness of the identified gene biomarker were further validated using GSE567 and GSE2006 datasets. The involvement of infiltrating immune cells and their correlations with the gene biomarker were examined using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. RESULTS: There were 105 DEGs identified between ET and healthy control samples. Disease Ontology (DO) analysis showed that the diseases enriched by those DEGs were mainly human cancers, neurological diseases and inflammation while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that pathways related to immune responses were primarily involved. The heat shock protein, DNAJB2, was identified as the potential biomarker for ET diagnosis with high effectiveness, with the area under the receiver operating characteristic (ROC) curve (AUC) equals to 0.905 in the validation cohort. The expression level of DNAJB2 in ET samples was indeed significantly higher than that in healthy control ones. The immune cell infiltration analysis showed that DNAJB2 was positively correlated with CD8+ T cells in ET with the proportion significantly higher than that in normal controls. CONCLUSION: The present study identified DNAJB2 as a novel diagnostic biomarker for ET with high effectiveness based on ET and normal samples from the GEO database, which provides new insights into predicting ET with accuracy and promptness in clinical practice.


Asunto(s)
Trombocitemia Esencial , Humanos , Biomarcadores , Algoritmos , Proliferación Celular , Proteínas de Choque Térmico , Chaperonas Moleculares , Proteínas del Choque Térmico HSP40
11.
Front Immunol ; 13: 1043111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439178

RESUMEN

Background: Nicotinamide Adenine Dinucleotide (NAD) depletion is reported to be a potential treatment for B-cell Acute Lymphoblastic Leukemia (B-ALL), but the mechanism of NAD metabolism-related genes (NMRGs) in B-ALL relapse remains unclear. Methods: Transcriptome data (GSE3912), and single-cell sequencing data (GSE130116) of B-ALL patients were downloaded from Gene Expression Omnibus (GEO) database. NMRGs were sourced from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Further, the differentially expressed NMRGs (DE-NMRGs) were selected from the analysis between initial diagnosis and relapse B-ALL samples, which further performed functional enrichment analyses. The biomarkers were obtained through random forest (RF) algorithm and repeated cross validation. Additionally, cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used to evaluate the immune cell differences between the initial diagnosis and relapse samples, and the correlations between biomarkers and gene markers of differential immune cells were analyzed. Furthermore, single cell RNA sequencing was conducted in the GSE130116 dataset to find key cell clusters. In addition, according to biomarkers expressions, cell clusters were categorized into high and low biomarker expression groups, and Gene Set Enrichment Analysis (GSEA) analysis was performed on them. Finally, the cell clusters with the highest expression of biomarkers were selected to explore the roles of biomarkers in different cell clusters and identify transcription factors (TFs) influencing biological markers. Results: 23 DE-NMRGs were screened out, which were mainly enriched in nucleoside phosphate metabolic process, nucleotide metabolic process, and Nicotinate and nicotinamide metabolism. Moreover, 3 biomarkers (NADSYN1, SIRT3, and PARP6) were identified from the machine learning. CIBERSORT results demonstrated that four types of immune cells (B Cells naive, Monocyte, Neutrophils, and T cells CD4 memory Activated) were significantly different between the initial diagnosis and the relapse B-ALL samples, and there were strong correlations between biomarkers and differential immune cells such as positive correlation between NADSYN1 and B Cells naive. The single cell analyses showed that the biomarkers were highly expressed in common myeloid progenitors (CMP), granulocyte-macrophage progenitor (GMP), and megakaryocyte-erythroid progenitor (MEP) cell clusters. Gene set enrichment analysis (GSEA) results indicated that 55 GO terms and 3 KEGG pathways were enriched by the genes in high and low biomarker expression groups. It was found that TF CREB3L2(+) was significantly reduced in the high expression group, which may be the TF affecting biomarkers in the high expression group. Conclusion: This study identified NADSYN1, SIRT3, and PARP6 as the biomarkers of B-ALL, explored biological significance of NMRGs in the initial diagnosis and relapse of B-ALL, and revealed mechanism of biomarkers at the level of the single cell.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Sirtuina 3 , Humanos , RNA-Seq , NAD , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos , Marcadores Genéticos , Recurrencia , ADP Ribosa Transferasas
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1384-1390, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36208239

RESUMEN

OBJECTIVE: In order to conduct high-throughput genome-wide translocation sequencing based on CRISPR/Cas9, Nalm6-cas9 monoclonal cell line expressing Cas9 protein was constructed by lentivirus transduction. METHODS: Lentiviral vectors LentiCas9-Blast, pSPAX2, and pMD2.G were used to co-transfect HEK293T cells to obtain recombinant lentivirus. After Nalm6 cells were infected with the recombinant lentivirus, the cells were screened by Blasticidin, and multiple monoclonal cell lines expressing Cas9 protein were obtained by limited dilution. Western blot was used to detect the expression level of Cas9 protein in monoclonal cell lines, and cell count analysis was used to detect the proliferation activity of monoclonal cell lines. LentiCRISPRV2GFP-Δcas9, LentiCRISPRV2GFP-Δcas9-AF4, LentiCRISPRV2GFP-Δ cas9-MLL plasmids were constructed, and transfected with pSPAX2 and pMD2.G, respectively. T vector cloning was used to detect the function of Cas9 protein in Nalm6-Cas9 monoclonal cell line infected with virus. RESULTS: Western blot showed that Nalm6-Cas9_1-6 monoclonal cell line had high expression of Cas9 protein. Cell count analysis showed that high expression of Cas9 protein in Nalm6-Cas9_1-6 monoclonal cell line did not affect cell proliferation activity. The Nalm6-Cas9_1-6 monoclonal cell line had high cleavage activity, and the editing efficiency of AF4 and MLL genes was more than 90% which was determined by T vector cloning. CONCLUSION: Nalm6-Cas9_1-6 monoclonal cell line stably expressing highly active Cas9 protein was obtained, which provided a basis for exploring the translocation of MLL in therapy-related leukemias based on CRISPR/Cas9 genome-wide high-throughput genome-wide translocation sequencing.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Proteína 9 Asociada a CRISPR/genética , Vectores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Plásmidos
13.
Acta Biomater ; 149: 297-306, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35811069

RESUMEN

Clinical photodynamic therapy (PDT) only has a limited cancer therapeutic effect and typically leads to a more hypoxic milieu owing to the hypoxic conditions of the solid tumor microenvironment that limit the singlet oxygen (1O2), generation. To address this issue, the PDT, in combination with hypoxia-activated prodrugs, has recently been investigated as a possible clinical treatment modality for cancer therapy. By cross-linking the photosensitizer tetra(4-hydroxyphenyl)porphine (THPP) and a 1O2-cleavable thioketal (TK) linker, a multifunctional nanoscale covalent organic framework (COF) platform with a high porphyrin loading capacity was synthesized, which significantly improve the reactive oxygen species (ROS) generation efficiency and contributes to PDT. As-synthesized THPPTK-PEG nanoparticles (NPs) possess a high THPP photosensitizer content and mesoporous structure for further loading of the hypoxia-responsive prodrug banoxantrone (AQ4N) into the COF with a high-loading content. The nano-carriers surfaces are coated with a thick PEG coating to promote their dispersibility in physiological surroundings and therapeutic performance. When exposed to 660 nm radiation, such a nanoplatform can efficiently create cytotoxic 1O2 for PDT. Similarly, oxygen intake may exacerbate the hypoxic environment of the tumor, inducing the activation of AQ4N to achieve hypoxia-activated cascade chemotherapy and increased treatment efficacy. This study provides a new nanoplatform for photodynamic-chemical synergistic therapy and offers critical new insights for designing and developing a multifunctional supramolecular drug delivery system. STATEMENT OF SIGNIFICANCE: Here, we designed a laser-activated hypoxia-responsive nanoscale COF nanoplatform for hypoxia-activated cascade chemotherapy and PDT. When exposed to laser light, thus this nanoplatform can efficiently create cytotoxic 1O2 for PDT while consuming oxygen at the tumor location. However, increased oxygen consumption can exacerbate the tumor's hypoxic environment, causing AQ4N to become active, allowing for programmed hypoxia-triggered cascade chemotherapy and improved therapeutic efficacy. In addition, this innovative nanoscale COF nanoplatform allows for laser-controlled drug delivery in specific areas, which dramatically improves tumor inhibition. This research suggests a method for attaining ultrasensitive drug release and effective cascade therapy for cancer treatments.


Asunto(s)
Antineoplásicos , Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Profármacos , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Hipoxia , Estructuras Metalorgánicas/farmacología , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Oxígeno , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Profármacos/química , Profármacos/farmacología , Microambiente Tumoral
14.
Front Cell Dev Biol ; 9: 767624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926456

RESUMEN

Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1's resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.

15.
Cell Rep ; 36(13): 109756, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34592150

RESUMEN

Robust alternative end joining (A-EJ) in classical non-homologous end joining (c-NHEJ)-deficient murine cells features double-strand break (DSB) end resection and microhomology (MH) usage and promotes chromosomal translocation. The activities responsible for removing 3' single-strand overhangs following resection and MH annealing in A-EJ remain unclear. We show that, during class switch recombination (CSR) in mature mouse B cells, the structure-specific endonuclease complex XPF-ERCC1SLX4, although not required for normal CSR, represents a nucleotide-excision-repair-independent 3' flap removal activity for A-EJ-mediated CSR. B cells deficient in DNA ligase 4 and XPF-ERCC1 exhibit further impaired class switching, reducing joining to the resected S region DSBs without altering the MH pattern in S-S junctions. In ERCC1-deficient A-EJ cells, 3' single-stranded DNA (ssDNA) flaps that are generated predominantly in S/G2 phase of the cell cycle are susceptible to nuclease resolution. Moreover, ERCC1 promotes c-myc-IgH translocation in Lig4-/- cells. Our study reveals an important role of the flap endonuclease XPF-ERCC1 in A-EJ and oncogenic translocation in mouse B cells.


Asunto(s)
Linfocitos B/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Cambio de Clase de Inmunoglobulina/inmunología , Animales , Linfocitos B/inmunología , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/fisiología , Reparación del ADN/fisiología , Ratones , Translocación Genética/inmunología
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(4): 1251-1256, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34362511

RESUMEN

OBJECTIVE: To study the expression of B lymphocyte-induced mature protein-1 (BLIMP-1) in regulatory T cells (Tregs) of children with aplastic anemia (AA), and analyze its correlation with the number of Tregs and the levels of inhibitory cytokines interleukin (IL)-10 and transforming growth factor (TGF)-ß in plasma. METHODS: The peripheral blood samples of 10 newly diagnosed AA children and 10 healthy children were collected for experiment. qPCR was used to detect FOXP3 and PRDM1 mRNA expression levels. Flow cytometry was used to detect the proportion of Tregs, the expression of BLIMP-1 in Tregs, and the levels of cytokines such as IL-2, IL-17A, IL-6, interferon (IFN)-γ, IL-10 and TGF-ß in plasma. Pearson correlation model was used to evaluate the relationship between the expression of BLIMP-1 in Treg and the number of Tregs, as well as the levels of IL-10 and TGF-ß in plasma. RESULTS: Compared with control group, the proportion of Tregs in peripheral blood of AA children was decreased significantly (P<0.001); The plasma levels of proinflammatory cytokines IL-2, IL-6 and IFN-γ in AA children were increased significantly (P=0.033, P=0.031, P=0.006), and IL-17A also was increased but the difference was not statistically significant (P=0.052), while anti-inflammatory cytokines IL-10 and TGF-ß were significantly reduced (P=0.048, P=0.002). The relative expressions level of FOXP3 and PRDM1 mRNA in AA children were significantly lower than those in control group (P=0.037, P=0.016). The expression of BLIMP-1 protein in Tregs of AA children was significantly lower than that in control group (P<0.001). The expression level of BLIMP-1 protein in Tregs was positively correlated with the percentage of Tregs in lymphocytes (r=0.671, P=0.001), and was also positively correlated with the levels of IL-10 and TGF-ß in plasma (r=0.500, P=0.029; r=0.486, P=0.030). CONCLUSION: The expression of BLIMP-1 in Tregs of AA children is impaired, and the low expression of BLIMP-1 is related to the decrease of the number in Tregs and IL-10 and TGF-ß expressions.


Asunto(s)
Anemia Aplásica , Linfocitos T Reguladores , Niño , Citocinas , Citometría de Flujo , Factores de Transcripción Forkhead , Humanos , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Factor de Crecimiento Transformador beta
17.
Int J Gen Med ; 14: 3133-3144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239322

RESUMEN

OBJECTIVE: The aim of the present study is to evaluate the efficacy, complications, and contributing factors of immunosuppressive therapy (IST) response in children with acquired aplastic anemia (AA) and to explore optimal therapeutic methods for different clinical AA types. METHODS: A total of 130 children diagnosed with acquired AA underwent IST in the Department of Pediatrics at Sun Yat-sen Memorial Hospital and the Department of Pediatrics at Seventh Affiliated Hospital, Sun Yat-sen University, between January 1, 2006, and July 15, 2020. The overall survival (OS), response rates, complications, and response predictors were analyzed. The response rates were compared according to clinical AA type. RESULTS: All 130 children with AA were followed up with for a median of 50.6 months. Among the patients, 25 had non-severe AA (NSAA), 64 had severe AA (SAA), and 41 had very severe AA (VSAA). All patients initially received IST. In 13 patients, the IST failed; these patients received an allo-hematopoietic stem cell transplant as a salvage regimen. The OS rate was 90.3% ± 2.8%, and the response rates at 3, 6, 9, and 12 months were 34.19%, 39.32%, 49.57%, and 66.67%, respectively. The prolonged follow-up period might have led to higher response rates, especially in patients with SAA and VSAA. A multivariate logistic regression analysis of prognostic factors was conducted; the results showed that high red blood cell (RBC) and platelet (PLT) counts were associated with a high overall response rate and that the RBC count at diagnosis is a major contributing factor. CONCLUSION: With the use of rabbit anti-thymocyte globulin, proper cyclosporine management, and a prolonged IST follow-up period, a higher number of patients with acquired AA than normal achieved response. Proportionally, the number of patients who achieved remission within 12 months was higher in the SAA group (38.18%→63.64%) and VSAA group (28.95%→65.79%) than in the NSAA group (58.33%→75%). Higher RBC and PLT counts at diagnosis can predict a favorable outcome.

18.
Pediatr Blood Cancer ; 68(8): e29097, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031980

RESUMEN

OBJECTIVE: Cytokine storms are central to the development of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH). Previous studies have shown that single-nucleotide polymorphisms (SNPs) of cytokine genes may be associated with the development of EBV-HLH in children. As such, we investigated the association between susceptibility to EBV-HLH in children and SNPs and haplotypes of genes encoding interleukin-2 receptor subunit alpha (IL2RA), interleukin-10 (IL10), interferon gamma (IFNG), interferon regulatory factor 5 (IRF5), and C-C chemokine receptor 2 (CCR2). METHODS: Sixty-six children with EBV-HLH and 58 healthy EBV-seropositive controls were enrolled in this study. SNPs of IL2RA rs2104286, rs12722489, and rs11594656; IL10 rs1800896, rs1800871, and rs1800872; IFNG rs2430561, IRF5 rs2004640, and CCR2 rs1799864 were assayed and genotyped using the SNaPshot technique. RESULTS: Frequencies of the A allele of IL2RA rs2104286 and IL10 rs1800896, and C allele of IL-10 rs1800872 were significantly higher in the EBV-HLH group than in the control group. The AA genotype of IL2RA rs2104286 and IL10 rs1800896, and the CC genotype of IL10 rs1800872 might be associated with a significantly high risk of EBV-HLH. However, the frequencies of genotypes and alleles of IL2RA rs2104286, IL10 rs1800871, IFNG rs2430561, IRF5 rs2004640, and CCR2 rs1799864 were similar in both groups. Additionally, IL2RA AGT (rs2104286-rs12722489-rs11594656) and IL10 ACC (rs1800896-rs1800871-rs1800872) haplotypes were also associated with an increased risk of EBV-HLH. CONCLUSIONS: SNPs of IL2RA rs2104286, IL10 rs1800896 and rs1800872 and the haplotypes of IL2RA AGT and IL10 ACC were highly associated with susceptibility to EBV-HLH in children.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Interleucina-10 , Subunidad alfa del Receptor de Interleucina-2 , Linfohistiocitosis Hemofagocítica , Niño , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Haplotipos , Herpesvirus Humano 4 , Humanos , Factores Reguladores del Interferón/genética , Interferón gamma/genética , Interleucina-10/genética , Subunidad alfa del Receptor de Interleucina-2/genética , Linfohistiocitosis Hemofagocítica/genética , Linfohistiocitosis Hemofagocítica/virología , Polimorfismo de Nucleótido Simple , Receptores CCR2/genética , Receptores de Quimiocina
19.
Microb Cell Fact ; 20(1): 67, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691697

RESUMEN

BACKGROUND: Most patients with acute myeloid leukemia (AML) remain uncurable and require novel therapeutic methods. Gain-of-function FMS-like tyrosine kinase 3 (FLT3) mutations are present in 30-40% of AML patients and serve as an attractive therapeutic target. In addition, FLT3 is aberrantly expressed on blasts in > 90% of patients with AML, making the FLT3 ligand-based drug conjugate a promising therapeutic strategy for the treatment of patients with AML. Here, E. coli was used as a host to express recombinant human FLT3 ligand (rhFL), which was used as a specific vehicle to deliver cytotoxic drugs to FLT3 + AML cells. METHODS: Recombinant hFL was expressed and purified from induced recombinant BL21 (DE3) E. coli. Purified rhFL and emtansine (DM1) were conjugated by an N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) linker. We evaluated the potency of the conjugation product FL-DM1 against FLT3-expressing AML cells by examining viability, apoptosis and the cell cycle. The activation of proteins related to the activation of FLT3 signaling and apoptosis pathways was detected by immunoblotting. The selectivity of FL-DM1 was assessed in our unique HCD-57 cell line, which was transformed with the FLT3 internal tandem duplication mutant (FLT3-ITD). RESULTS: Soluble rhFL was successfully expressed in the periplasm of recombinant E. coli. The purified rhFL was bioactive in stimulating FLT3 signaling in AML cells, and the drug conjugate FL-DM1 showed activity in cell signaling and internalization. FL-DM1 was effective in inhibiting the survival of FLT3-expressing THP-1 and MV-4-11 AML cells, with half maximal inhibitory concentration (IC50) of 12.9 nM and 1.1 nM. Additionally, FL-DM1 induced caspase-3-dependent apoptosis and arrested the cell cycle at the G2/M phase. Moreover, FL-DM1 selectively targeted HCD-57 cells transformed by FLT3-ITD but not parental HCD-57 cells without FLT3 expression. FL-DM1 can also induce obvious apoptosis in primary FLT3-positive AML cells ex vivo. CONCLUSIONS: Our data demonstrated that soluble rhFL can be produced in a bioactive form in the periplasm of recombinant E. coli. FL can be used as a specific vehicle to deliver DM1 into FLT3-expressing AML cells. FL-DM1 exhibited cytotoxicity in FLT3-expressing AML cell lines and primary AML cells. FL-DM1 may have potential clinical applications in treating patients with FLT3-positive AML.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Maitansina/farmacología , Proteínas de la Membrana/farmacología , Animales , Antineoplásicos/metabolismo , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Maitansina/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Recombinantes/biosíntesis , Transducción de Señal/efectos de los fármacos , Tirosina Quinasa 3 Similar a fms/metabolismo
20.
Mol Med Rep ; 23(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179101

RESUMEN

Huangqi, the dried root of Radix Astragali, is an essential herb in Traditional Chinese Medicine and has been used to promote hematopoiesis for centuries. Astragalus polysaccharide (ASPS), the bioactive compound of Huangqi, serves a crucial role in hematopoiesis. The aim of the present study was to investigate the hematopoietic effects, in particular the thrombopoietic effects, and the molecular mechanisms of ASPS using an irradiation­induced myelosuppressive mouse model. Colony­forming unit assays, flow cytometric analysis of apoptosis, ELISAs, Giemsa staining and western blotting were performed to determine the hematopoietic and anti­apoptotic effects of ASPS. The results demonstrated that ASPS enhanced the recovery of red blood cells at day 21 following treatment, as well as platelets and white blood cells at day 14. In addition, ASPS promoted colony formation in all lineages (megakaryocytes, granulocyte monocytes, erythroid cells and fibroblasts). The morphological study of the bone marrow demonstrated that tri­lineage hematopoiesis was preserved in the ASPS­ and thrombopoietin (TPO)­treated groups compared with the control group. The overall cellularity (mean total cell count/area) of the ASPS­treated group was similar to that of the TPO­treated group. Additionally, in vitro experiments indicated that treatment with 100 µg/ml ASPS exhibited the maximum effect on colony formation. ASPS attenuated cell apoptosis in megakaryocytic cells via inhibiting the mitochondrial caspase­3 signaling pathway. In conclusion, ASPS promoted hematopoiesis in irradiated myelosuppressive mice possibly via enhancing hematopoietic stem/progenitor cell proliferation and inhibiting megakaryocytes apoptosis.


Asunto(s)
Medicamentos Herbarios Chinos/química , Megacariocitos/citología , Polisacáridos/administración & dosificación , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Trombocitopenia/prevención & control , Animales , Apoptosis/efectos de los fármacos , Astragalus propinquus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Inyecciones Intraperitoneales , Masculino , Megacariocitos/efectos de los fármacos , Megacariocitos/efectos de la radiación , Ratones , Polisacáridos/farmacología , Traumatismos Experimentales por Radiación/complicaciones , Traumatismos Experimentales por Radiación/metabolismo , Trombocitopenia/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...