Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 859
1.
Ann Surg Oncol ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824192

BACKGROUND: This study was designed to develop an innovative classification and guidance system for renal hilar tumors and to assess the safety and effectiveness of robot-assisted partial nephrectomy (RAPN) for managing such tumors. METHODS: A total of 179 patients undergoing RAPN for renal hilar tumors were retrospectively reviewed. A novel classification system with surgical techniques was introduced and the perioperative features, tumor characteristics, and the efficacy and safety of RAPN were compared within subgroups. RESULTS: We classified the tumors according to our novel system as follows: 131 Type I, 35 Type II, and 13 Type III. However, Type III had higher median R.E.N.A.L., PADUA, and ROADS scores compared with the others (all p < 0.001), indicating increased operative complexity and higher estimated blood loss [180.00 (115.00-215.00) ml]. Operative outcomes revealed significant disparities between Type III and the others, with longer operative times [165.00 (145.00-200.50) min], warm ischemia times [24.00 (21.50-30.50) min], tumor resection times [13.00 (12.00-15.50) min], and incision closure times [22.00 (20.00-23.50) min] (all p < 0.005). Postoperative outcomes also showed significant differences, with longer durations of drain removal (77.08 ± 18.16 h) and hospitalization for Type III [5.00 (5.00-6.00) d] (all p < 0.05). Additionally, Type I had a larger tumor diameter than the others (p = 0.009) and pT stage differed significantly between the subtypes (p = 0.020). CONCLUSIONS: The novel renal hilar tumor classification system is capable of differentiating the surgical difficulty of RAPN and further offers personalized surgical steps tailored to each specific classification. It provides a meaningful tool for clinical practice.

2.
Anal Methods ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829181

The level of sulfur dioxide (SO2) and viscosity in mitochondria play vital roles in various physiological and pathological processes. Abnormalities in mitochondrial SO2 and viscosity are closely associated with numerous biological diseases. It is of great significance to develop novel fluorescence probes for simultaneous detection of SO2 and viscosity within mitochondria. Herein, we have developed a water-soluble, mitochondrial-targeted and near-infrared fluorescent probe, CMBT, for the simultaneous detection of SO2 and viscosity. The probe CMBT incorporates benzothiazolium salt as a mitochondrial targeting moiety and 7-diethylaminocoumarin as a rotor for viscosity detection, respectively. Based on the prompt reaction between nucleophilic HSO3-/SO32- and the backbone of the benzothiazolium salt derivative, probe CMBT displayed high sensitivity and selectivity toward SO2 with a limit of detection as low as 0.17 µM. As viscosity increased, the twisted intramolecular charge transfer (TICT) process was restricted, resulting in fluorescence emission enhancement at 690 nm. Moreover, probe CMBT demonstrated exceptional mitochondrial targeting ability and was successfully employed to image variations of SO2 and viscosity in living cells and mice. The work highlights the great potential of the probe as a convenient tool for revealing the relationship between SO2 and viscosity in biological systems.

3.
Heliyon ; 10(11): e31757, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38845977

Background: The prevalence of nontuberculous mycobacterial (NTM) disease in children is increasing worldwide. The clinical manifestations of pediatric NTM patients are significantly different from those of adult patients, but the knowledge of the disease is generally poor. Methods: English databases (PubMed, Web of Science, Embase, BIOSIS) and Chinese databases (CNKI, Wanfan, VIP) were searched on October 15th, 2022. All the articles of cross-sectional and cohort studies reporting the species composition and lesion site of the NTM disease in children using well-recognized NTM species identification methods were taken into account. Using a random effects model, we assessed the disease lesion sites and the prevalence of different NTM species in pediatric NTM disease. Sources of heterogeneity were analyzed using Cochran's Q and the I2 statistic. All analyses were performed using CMA V3.0. Results: The prevalence rates of NTM disease in children ranged between 0.6 and 5.36/100,000 in different countries, and Europe reported the highest prevalence rate. The most common clinical lesion site was lymph node, accounting for 71.1 % (55.0 %-83.2 %), followed by lung (19.3 %, 9.8%-34.4 %)and then skin and soft tissue (16.6 %,13.5%-20.3 %). Mycobacterium avium complex (MAC) was the most isolated NTM pathogen in children, accounting for 54.9 % (39.4%-69.6 %). Inconsistent with adult patients, Mycobacterium avium accounted for a dominant proportion in MAC than Mycobacterium intracellulare. Conclusions: The lymph node was the most affected organ in pediatric NTM disease, while Mycobacterium avium was the most isolated pathogenic species in children.

6.
J Magn Reson Imaging ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38738786

BACKGROUND: Clear cell likelihood score (ccLS) is reliable for diagnosing small renal masses (SRMs). However, the diagnostic value of Clear cell likelihood score version 1.0 (ccLS v1.0) and v2.0 for common subtypes of SRMs might be a potential score extension. PURPOSE: To compare the diagnostic performance and interobserver agreement of ccLS v1.0 and v2.0 for characterizing five common subtypes of SRMs. STUDY TYPE: Retrospective. POPULATION: 797 patients (563 males, 234 females; mean age, 53 ± 12 years) with 867 histologically proven renal masses. FIELD STRENGTH/SEQUENCES: 3.0 and 1.5 T/T2 weighted imaging, T1 weighted imaging, diffusion-weighted imaging, a dual-echo chemical shift (in- and opposed-phase) T1 weighted imaging, multiphase dynamic contrast-enhanced imaging. ASSESSMENT: Six abdominal radiologists were trained in the ccLS algorithm and independently scored each SRM using ccLS v1.0 and v2.0, respectively. All SRMs had definite pathological results. The pooled area under curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the diagnostic performance of ccLS v1.0 and v2.0 for characterizing common subtypes of SRMs. The average κ values were calculated to evaluate the interobserver agreement of the two scoring versions. STATISTICAL TESTS: Random-effects logistic regression; Receiver operating characteristic analysis; DeLong test; Weighted Kappa test; Z test. The statistical significance level was P < 0.05. RESULTS: The pooled AUCs of clear cell likelihood score version 2.0 (ccLS v2.0) were statistically superior to those of ccLS v1.0 for diagnosing clear cell renal cell carcinoma (ccRCC) (0.907 vs. 0.851), papillary renal cell carcinoma (pRCC) (0.926 vs. 0.888), renal oncocytoma (RO) (0.745 vs. 0.679), and angiomyolipoma without visible fat (AMLwvf) (0.826 vs. 0.766). Interobserver agreement for SRMs between ccLS v1.0 and v2.0 is comparable and was not statistically significant (P = 0.993). CONCLUSION: The diagnostic performance of ccLS v2.0 surpasses that of ccLS v1.0 for characterizing ccRCC, pRCC, RO, and AMLwvf. Especially, the standardized algorithm has optimal performance for ccRCC and pRCC. ccLS has potential as a supportive clinical tool. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 2.

7.
Brain ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38701344

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

8.
ACS Appl Mater Interfaces ; 16(22): 28134-28146, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38768602

Vessel transplantation is currently considered the "gold standard" treatment for cardiovascular disease. However, ideal artificial vascular grafts should possess good biocompatibility and mechanical strength that match those of native autologous vascular tissue to promote in vivo tissue regeneration. In this study, a series of dynamic cross-linking double-network hydrogels and the resultant hydrogel tubes were prepared. The hydrogels (named PCO), composed of rigid poly(vinyl alcohol) (PVA), flexible carboxymethyl chitosan (CMCS), and a cross-linker of aldehyde-based ß-cyclodextrin (OCD), were formed in a double-network structure with multiple dynamical cross-linking including dynamic imine bonds, hydrogen bonds, and microcrystalline regions. The PCO hydrogels exhibited superior mechanical strength, good network stability, and fatigue resistance. Additionally, it demonstrated excellent cell and blood compatibility. The results showed that the introduction of CMCS/OCD led to a significant increase in the proliferation rate of endothelial cells seeded on the surface of the hydrogel. The hemolysis rate in the test was lower than 0.3%, and both protein adsorption and platelet adhesion were reduced, indicating an excellent anticoagulant function. The plasma recalcification time test results showed that endogenous coagulation was alleviated to some extent. When formed into blood vessels and incubated with blood, no thrombus formation was observed, and there was minimal red blood cell aggregation. Therefore, this novel hydrogel tube, with excellent mechanical properties, exhibits antiadhesive characteristics toward blood cells and proteins, as well as antithrombotic properties, making it hold tremendous potential for applications in the biomedical and engineering fields.


Biocompatible Materials , Chitosan , Hydrogels , Polyvinyl Alcohol , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Humans , Polyvinyl Alcohol/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Blood Vessel Prosthesis , Materials Testing , beta-Cyclodextrins/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Cell Proliferation/drug effects , Hemolysis/drug effects , Animals , Platelet Adhesiveness/drug effects , Cross-Linking Reagents/chemistry
9.
Medicine (Baltimore) ; 103(21): e38254, 2024 May 24.
Article En | MEDLINE | ID: mdl-38788021

Cerebral collateral circulation (CC) is associated with the recurrence and severity of acute ischemic stroke (AIS), and early identification of poor CC is helpful for the prevention of AIS. In this study we evaluated the association between serum albumin levels and CC in AIS using logistic regression. Propensity score (PS) matching was used to eliminate the effect of confounders, and restricted cubic splines (RCS) were employed to explore potential nonlinear associations between albumin and CC. In unadjusted logistic regression analysis, lower albumin (OR = 0.85, 95% CI = 0.79-0.92) was associated with poor CC, and after adjusting for covariates, the odds of lower albumin for poor CC compared to good CC were 0.86 (95% CI = 0.79-0.94). In the PS cohort, the association of albumin with CC was consistent with those of the original cohort. RCS results showed a linear relationship between albumin and CC (P values of .006 and .08 for overall and nonlinear associations, respectively). The results of this study suggest that lower serum albumin is independently associated with an increased risk of poor CC, which may serve as an effective predictive indicator for poor CC in patients with severe intracranial atherosclerotic stenosis.


Collateral Circulation , Ischemic Stroke , Propensity Score , Serum Albumin , Humans , Male , Collateral Circulation/physiology , Female , Ischemic Stroke/blood , Ischemic Stroke/physiopathology , Ischemic Stroke/etiology , Middle Aged , Aged , Serum Albumin/analysis , Cerebrovascular Circulation/physiology , Intracranial Arteriosclerosis/blood , Intracranial Arteriosclerosis/physiopathology , Intracranial Arteriosclerosis/complications , Retrospective Studies , Logistic Models
10.
Foods ; 13(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38790808

α-Dicarbonyl compounds (α-DCs) are commonly present in various foods. We conducted the investigation into concentration changes of α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) in fresh fruits and decapped commercial juices during storage at room temperature and 4 °C, as well as in homemade juices during storage at 4 °C. The studies indicate the presence of α-DCs in all samples. The initial contents of 3-DG in the commercial juices (6.74 to 65.61 µg/mL) are higher than those in the homemade ones (1.97 to 4.65 µg/mL) as well as fruits (1.58 to 3.33 µg/g). The initial concentrations of GO and MGO are normally less than 1 µg/mL in all samples. During storage, the α-DC levels in the fruits exhibit an initial increase followed by a subsequent decrease, whereas, in all juices, they tend to accumulate continuously over time. As expected, 4 °C storage reduces the increase rates of the α-DC concentrations in most samples. From the viewpoint of the α-DC contents, fruits and homemade juices should always be the first choice for daily intake of nutrients and commercial juices ought to be mostly avoided.

11.
Sci Rep ; 14(1): 10954, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740797

Temporal focusing two-photon microscopy has been utilized for high-resolution imaging of neuronal and synaptic structures across volumes spanning hundreds of microns in vivo. However, a limitation of temporal focusing is the rapid degradation of the signal-to-background ratio and resolution with increasing imaging depth. This degradation is due to scattered emission photons being widely distributed, resulting in a strong background. To overcome this challenge, we have developed multiline orthogonal scanning temporal focusing (mosTF) microscopy. mosTF captures a sequence of images at each scan location of the excitation line. A reconstruction algorithm then reassigns scattered photons back to their correct scan positions. We demonstrate the effectiveness of mosTF by acquiring neuronal images of mice in vivo. Our results show remarkable improvements in in vivo brain imaging with mosTF, while maintaining its speed advantage.


Brain , Animals , Brain/diagnostic imaging , Brain/metabolism , Mice , Algorithms , Microscopy, Fluorescence, Multiphoton/methods , Neurons/metabolism , Image Processing, Computer-Assisted/methods
12.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724505

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
13.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 92-97, 2024 May 01.
Article En | MEDLINE | ID: mdl-38699970

The Rib domain, which is often found as tandem-repeat structural modules in surface proteins of Gram-positive bacteria, plays important roles in mediating interactions of bacteria with their environments and hosts. A comprehensive structural analysis of various Rib domains is essential to fully understand their impact on the structure and functionality of these bacterial adhesins. To date, structural information has been limited for this expansive group of domains. In this study, the high-resolution crystal structure of the second member of the long Rib domain, a unique subclass within the Rib-domain family, derived from Limosilactobacillus reuteri is presented. The data not only demonstrate a highly conserved structure within the long Rib domain, but also highlight an evolutionary convergence in structural architecture with other modular domains found in cell-adhesion molecules.


Limosilactobacillus reuteri , Models, Molecular , Protein Domains , Limosilactobacillus reuteri/chemistry , Limosilactobacillus reuteri/metabolism , Limosilactobacillus reuteri/genetics , Crystallography, X-Ray , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
14.
Int J Immunopathol Pharmacol ; 38: 3946320241240706, 2024.
Article En | MEDLINE | ID: mdl-38712735

Introduction: Bladder cancer represents a significant public health concern with diverse genetic alterations influencing disease onset, progression, and therapy response. In this study, we explore the multifaceted role of Solute Carrier Family 31 Member 1 (SLC31A1) in bladder cancer, a pivotal gene involved in copper homeostasis. Methods: Our research involved analyzing the SLC31A1 gene expression via RT-qPCR, promoter methylation via targeted bisulfite sequencing, and mutational status via Next Generation Sequencing (NGS) using the clinical samples sourced by the local bladder cancer patients. Later on, The Cancer Genome Atlas (TCGA) datasets were utilized for validation purposes. Moreover, prognostic significance, gene enrichment terms, and therapeutic drugs of SLC31A1 were also explored using KM Plotter, DAVID, and DrugBank databases. Results: We observed that SLC31A1 was significantly up-regulated at both the mRNA and protein levels in bladder cancer tissue samples, suggesting its potential involvement in bladder cancer development and progression. Furthermore, our investigation into the methylation status revealed that SLC31A1 was significantly hypomethylated in bladder cancer tissues, which may contribute to its overexpression. The ROC analysis of the SLC31A1 gene indicated promising diagnostic potential, emphasizing its relevance in distinguishing bladder cancer patients from normal individuals. However, it is crucial to consider other factors such as cancer stage, metastasis, and recurrence for a more accurate evaluation in the clinical context. Interestingly, mutational analysis of SLC31A1 demonstrated only benign mutations, indicating their unknown role in the SLC31A1 disruption. In addition to its diagnostic value, high SLC31A1 expression was associated with poorer overall survival (OS) in bladder cancer patients, shedding light on its prognostic relevance. Gene enrichment analysis indicated that SLC31A1 could influence metabolic and copper-related processes, further underscoring its role in bladder cancer. Lastly, we explored the DrugBank database to identify potential therapeutic agents capable of reducing SLC31A1 expression. Our findings unveiled six important drugs with the potential to target SLC31A1 as a treatment strategy. Conclusion: Our comprehensive investigation highlights SLC31A1 as a promising biomarker for bladder cancer development, progression, and therapy.


Copper Transporter 1 , Urinary Bladder Neoplasms , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Copper Transporter 1/genetics , Copper Transporter 1/metabolism , Disease Progression , DNA Methylation , Gene Expression Regulation, Neoplastic , Mutation , Prognosis , Promoter Regions, Genetic , Up-Regulation , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
15.
Int J Surg ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38597388

BACKGROUND: The efficacy of laparoscopic completion total gastrectomy (LCTG) for remnant gastric cancer (RGC) remains controversial. METHODS: The primary outcome was postoperative morbidity within 30 days after surgery. Secondary outcomes included 3-year disease-free survival (DFS), 3-year overall survival (OS), and recurrence. Inverse probability treatment weighted (IPTW) was used to balance the baseline between LCTG and OCTG. RESULTS: Final analysis included 46 patients with RGC who underwent LCTG at the FJMUUH between June 2016 and June 2020. The historical control group comprised of 160 patients who underwent open completion total gastrectomy (OCTG) in the six tertiary teaching hospitals from CRGC-01 study. After IPTW, no significant difference was observed between the LCTG and OCTG groups in terms of incidence (LCTG vs. OCTG: 28.0% vs. 35.0%, P=0.379) or severity of complications within 30 days after surgery. Compared with OCTG, LCTG resulted in better short-term outcomes and faster postoperative recovery. However, the textbook outcome rate was comparable between the two groups (45.9% vs. 32.8%, P=0.107). Additionally, the 3-year DFS and 3-year OS of LCTG were comparable to those of OCTG (DFS: log-rank P=0.173; OS: log-rank P=0.319). No significant differences in recurrence type, mean recurrence time, or 3-year cumulative hazard of recurrence were observed between the two groups (all P>0.05). Subgroup analyses and concurrent comparisons demonstrated similar trends. CONCLUSIONS: This prospective study suggested that LCTG was non-inferior to OCTG in both short- and long-term outcomes. In experienced centers, LCTG may be considered as a viable treatment option for RGC.

16.
Sci Total Environ ; 927: 172376, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604376

Biofilms are widely used and play important roles in biological processes. Low temperature of wastewater inhibits the development of biofilms derived from wastewater activated sludge. However, the specific mechanism of temperature on biofilm development is still unclear. This study explored the mechanism of temperature on biofilm development and found a feasible method to enhance biofilm development at low temperature. The amount of biofilm development decreased by approximately 66 % and 55 % at 4 °C and 15 °C, respectively, as compared to 28 °C. The cyclic dimeric guanosine monophosphate (c-di-GMP) concentration also decreased at low temperature and was positively correlated with extracellular polymeric substance (EPS) content, formation, and adhesion strength. Microbial community results showed that low temperature inhibited the normal survival of most microorganisms, but promoted the growth of some psychrophile bacteria like Sporosarcina, Caldilineaceae, Gemmataceae, Anaerolineaceae and Acidobacteriota. Further analysis of functional genes demonstrated that the abundance of functional genes related to the synthesis of c-di-GMP (K18968, K18967 and K13590) decreased at low temperature. Subsequently, the addition of exogenous spermidine increased the level of intracellular c-di-GMP and alleviated the inhibition effect of low temperature on biofilm development. Therefore, the possible mechanism of low temperature on biofilm development could be the inhibition of the microorganism activity and reduction of the communication level between cells, which is the closely related to the EPS content, formation, and adhesion strength. The enhancement of c-di-GMP level through the exogenous addition of spermidine provides an alternative strategy to enhance biofilm development at low temperatures. The results of this study enhance the understanding of the influence of temperature on biofilm development and provide possible strategies for enhancing biofilm development at low temperatures.


Bacteria , Biofilms , Cyclic GMP , Bacterial Physiological Phenomena , Cold Temperature , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Extracellular Polymeric Substance Matrix , Wastewater/microbiology
17.
Int J Gen Med ; 17: 1533-1543, 2024.
Article En | MEDLINE | ID: mdl-38680194

Purpose: The association between serum uric acid (SUA) and atrial fibrillation (AF) has been widely focused on and studied in recent years. However, the exact association between SUA and AF is unclear, and the effect of gender on the association between SUA levels and AF has been controversial. This study aimed to investigate the association between SUA levels and non-valvular AF (NVAF) and the potential effect of gender on it. Patients and Methods: A total of 866 NVAF patients (463 males, age 69.44 ± 8.07 years) and 646 sex-matched control patients in sinus rhythm, with no history of arrhythmia were included in this study. t-test, ANOVA, and chi-square test were used for baseline data analysis. The receiver operating characteristic curve, logistic regression and Pearson correlation analysis were used for correlation analysis. Results: Compared to controls, NVAF patients exhibited higher SUA (P<0.001). After adjusting for confounders of NVAF, SUA remained significantly associated with NVAF, regardless of gender (OR= 1.31, 95% CI 1.18-1.43, P<0.001). SUA demonstrated higher predictability and sensitivity in predicting the occurrence of female NVAF compared to male (area under the curve was 0.68 (95% CI 0.64-0.72, P<0.001), sensitivity 87.3%), with the optimal cut-off point identified as 5.72 mg/dL. Furthermore, SUA levels correlated with APOA1, Scr and NT-proBNP in NVAF patients. SUA levels varied significantly among NVAF subtypes. Conclusion: High SUA levels were independently associated with NVAF, regardless of gender. SUA exhibited higher predictability and sensitivity in predicting the occurrence of NVAF in females compared to males. High SUA levels may affect other NVAF-related factors and participate in the pathophysiological process of NVAF.

18.
J Am Chem Soc ; 146(17): 11906-11923, 2024 May 01.
Article En | MEDLINE | ID: mdl-38629727

The complex and dynamic compositions of biofilms, along with their sophisticated structural assembly mechanisms, endow them with exceptional capabilities to thrive in diverse conditions that are typically unfavorable for individual cells. Characterizing biofilms in their native state is significantly challenging due to their intrinsic complexities and the limited availability of noninvasive techniques. Here, we utilized solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze Bacillus subtilis biofilms in-depth. Our data uncover a dynamically distinct organization within the biofilm: a dominant, hydrophilic, and mobile framework interspersed with minor, rigid cores of limited water accessibility. In these heterogeneous rigid cores, the major components are largely self-assembled. TasA fibers, the most robust elements, further provide a degree of mechanical support for the cell aggregates and some lipid vesicles. Notably, rigid cell aggregates can persist even without the major extracellular polymeric substance (EPS) polymers, although this leads to slight variations in their rigidity and water accessibility. Exopolysaccharides are exclusively present in the mobile domain, playing a pivotal role in its water retention property. Specifically, all water molecules are tightly bound within the biofilm matrix. These findings reveal a dual-layered defensive strategy within the biofilm: a diffusion barrier through limited water mobility in the mobile phase and a physical barrier posed by limited water accessibility in the rigid phase. Complementing these discoveries, our comprehensive, in situ compositional analysis is not only essential for delineating the sophisticated biofilm architecture but also reveals the presence of alternative genetic mechanisms for synthesizing exopolysaccharides beyond the known pathway.


Bacillus subtilis , Biofilms , Magnetic Resonance Spectroscopy , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Magnetic Resonance Spectroscopy/methods , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism
19.
ACS Appl Bio Mater ; 7(5): 3202-3214, 2024 May 20.
Article En | MEDLINE | ID: mdl-38651918

The combination of small-interfering RNA (siRNA)-mediated gene silencing and chemotherapeutic agents for lung cancer treatment has attracted widespread attention in terms of a greater therapeutic effect, minimization of systemic toxicity, and inhibition of multiple drug resistance (MDR). In this work, three amphiphiles, CBN1-CBN3, were first designed and synthesized as a camptothecin (CPT) conjugate and gene condensation agents by the combination of CPT prodrugs and di(triazole-[12]aneN3) through the ROS-responsive phenylborate ester and different lengths of alkyl chains (with 6, 9, 12 carbon chains for CBN1-CBN3, respectively). CBN1-CBN3 were able to be self-assembled into liposomes with an average diameter in the range of 320-240 nm, showing the ability to effectively condense siRNA. Among them, CBN2, with a nine-carbon alkyl chain, displayed the best anticancer efficiency in A549 cells. In order to give nanomedicines a stealth property and PEGylation/dePEGylation transition, a GSH-responsive PEGylated TPE derivative containing a disulfide linkage (TSP) was further designed and prepared. A combination of CBN2/siRNA complexes and DOPE with TSP resulted in GSH/ROS dual-responsive lipid-polymer hybrid nanoparticles (CBN2-DP/siRNA NPs). In present GSH and H2O2, CBN2-DP/siRNA NPs were decomposed, resulting in the controlled release of CPT drug and siRNA. In vitro, CBN2-DP/siPHB1 NPs showed the best anticancer activity for suppression of about 75% of A549 cell proliferation in a serum medium. The stability of CBN2-DP/siRNA NPs was significantly prolonged in blood circulation, and they showed effective accumulation in the A549 tumor site through an enhanced permeability and retention (EPR) effect. In vivo, CBN2-DP/siPHB1 NPs demonstrated enhanced synergistic cancer therapy efficacy and tumor inhibition as high as 71.2%. This work provided a strategy for preparing lipid-polymer hybrid NPs with GSH/ROS dual-responsive properties and an intriguing method for lung cancer therapy.


Biocompatible Materials , Camptothecin , Cell Proliferation , Drug Screening Assays, Antitumor , Lung Neoplasms , Nanoparticles , RNA, Small Interfering , Reactive Oxygen Species , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , RNA, Small Interfering/chemistry , Camptothecin/chemistry , Camptothecin/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Proliferation/drug effects , Materials Testing , Glutathione/chemistry , Glutathione/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , A549 Cells , Particle Size , Lipids/chemistry , Molecular Structure , Animals , Cell Survival/drug effects , Mice , Prohibitins
20.
BMC Cancer ; 24(1): 532, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671389

BACKGROUND: Aberrant expressions of desmoglein 2 (Dsg2) and desmocollin 2(Dsc2), the two most widely distributed desmosomal cadherins, have been found to play various roles in cancer in a context-dependent manner. Their specific roles on breast cancer (BC) and the potential mechanisms remain unclear. METHODS: The expressions of Dsg2 and Dsc2 in human BC tissues and cell lines were assessed by using bioinformatics analysis, immunohistochemistry and western blotting assays. Wound-healing and Transwell assays were performed to evaluate the cells' migration and invasion abilities. Plate colony-forming and MTT assays were used to examine the cells' capacity of proliferation. Mechanically, Dsg2 and Dsc2 knockdown-induced malignant behaviors were elucidated using western blotting assay as well as three inhibitors including MK2206 for AKT, PD98059 for ERK, and XAV-939 for ß-catenin. RESULTS: We found reduced expressions of Dsg2 and Dsc2 in human BC tissues and cell lines compared to normal counterparts. Furthermore, shRNA-mediated downregulation of Dsg2 and Dsc2 could significantly enhance cell proliferation, migration and invasion in triple-negative MDA-MB-231 and luminal MCF-7 BC cells. Mechanistically, EGFR activity was decreased but downstream AKT and ERK pathways were both activated maybe through other activated protein tyrosine kinases in shDsg2 and shDsc2 MDA-MB-231 cells since protein tyrosine kinases are key drivers of triple-negative BC survival. Additionally, AKT inhibitor treatment displayed much stronger capacity to abolish shDsg2 and shDsc2 induced progression compared to ERK inhibition, which was due to feedback activation of AKT pathway induced by ERK inhibition. In contrast, all of EGFR, AKT and ERK activities were attenuated, whereas ß-catenin was accumulated in shDsg2 and shDsc2 MCF-7 cells. These results indicate that EGFR-targeted therapy is not a good choice for BC patients with low Dsg2 or Dsc2 expression. Comparatively, AKT inhibitors may be more helpful to triple-negative BC patients with low Dsg2 or Dsc2 expression, while therapies targeting ß-catenin can be considered for luminal BC patients with low Dsg2 or Dsc2 expression. CONCLUSION: Our finding demonstrate that single knockdown of Dsg2 or Dsc2 could promote proliferation, motility and invasion in triple-negative MDA-MB-231 and luminal MCF-7 cells. Nevertheless, the underlying mechanisms were cellular context-specific and distinct.


Cell Movement , Cell Proliferation , Desmocollins , Desmoglein 2 , Triple Negative Breast Neoplasms , Humans , Desmocollins/metabolism , Desmocollins/genetics , Desmoglein 2/metabolism , Desmoglein 2/genetics , Female , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic , beta Catenin/metabolism , Signal Transduction
...