Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(6): e2302858, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37947125

RESUMEN

Cerium (Ce) is a hot topic in the field of materials research due to its electronic layer structure and the unique antioxidant abilities of its oxide (CeO2 ). Cerium oxide nanoparticles (CeO2 NPs) demonstrate their potential as an antioxidant and antibacterial agent. Current research focuses on whether they can be used to promote wound healing and in what manner. This article provides a systematic review of the various forms of CeO2 NPs that are used in wound-healing materials over the past decade, as well as the effectiveness demonstrated by in vivo and in vitro experiments, with a focus on the relationship between concentration and effectiveness. CeO2 NPs are expected to become effective ingredients in dressings that require antibacterial, antioxidant, and wound healing promoting properties. This article serves as a reference for further research and clinical applications of nano-sized CeO2 in wound healing.


Asunto(s)
Vendajes , Cerio , Nanopartículas , Cicatrización de Heridas , Antibacterianos/farmacología , Antioxidantes/farmacología , Cerio/farmacología
2.
Mater Today Bio ; 19: 100595, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36910271

RESUMEN

The biological functions of rare-earth elements (REEs) have become a focus of intense research. Recent studies have demonstrated that ion doping or alloying of some REEs can optimize the properties of traditional biomaterials. Europium (Eu), which is an REE with low toxicity and good biocompatibility, has promising applications in biomedicine. This article systematically reviews the osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties of Eu-containing biomaterials, thereby paving the way for biomedical applications of Eu. Data collection for this review was completed in October 2022, and 30 relevant articles were finally included. Most articles indicated that doping of Eu ions or Eu-compound nanoparticles in biomaterials can improve their osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties. The angiogenic, antibacterial, and potential neuritogenic effects of Eu(OH)3 nanoparticles have also been demonstrated.

3.
Bioact Mater ; 26: 88-101, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36875054

RESUMEN

Skin wounds are a major medical challenge that threaten human health. Functional hydrogel dressings demonstrate great potential to promote wound healing. In this study, magnesium (Mg) and zinc (Zn) are introduced into methacrylate gelatin (GelMA) hydrogel via low-temperature magnetic stirring and photocuring, and their effects on skin wounds and the underlying mechanisms are investigated. Degradation testing confirmed that the GelMA/Mg/Zn hydrogel released magnesium ions (Mg2+) and zinc ions (Zn2+) in a sustained manner. The Mg2+ and Zn2+ not only enhanced the migration of human skin fibroblasts (HSFs) and human immortalized keratinocytes (HaCats), but also promoted the transformation of HSFs into myofibroblasts and accelerated the production and remodeling of extracellular matrix. Moreover, the GelMA/Mg/Zn hydrogel enhanced the healing of full-thickness skin defects in rats via accelerated collagen deposition, angiogenesis and skin wound re-epithelialization. We also identified the mechanisms through which GelMA/Mg/Zn hydrogel promoted wound healing: the Mg2+ promoted Zn2+ entry into HSFs and increased the concentration of Zn2+ in HSFs, which effectively induced HSFs to differentiate into myofibroblasts by activating the STAT3 signaling pathway. The synergistic effect of Mg2+ and Zn2+ promoted wound healing. In conclusion, our study provides a promising strategy for skin wounds regeneration.

4.
Chemosphere ; 291(Pt 1): 132714, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34743871

RESUMEN

The level of environmental microplastics in the biosphere is constantly increasing. These environmental microplastics can enter the human body with food, be absorbed through the gut, and have negative effects on the organism health after its digestion. Four sizes (0.1, 0.5, 1, 5 µm) polystyrene microspheres (PS-MPs) and nanospheres (PS-NPs) were selected for this study. The effects of different sizes of polystyrene particles on human colonic epithelial cell CCD841CoN and small intestinal epithelial cell HIEC-6 within 24 h were explored. The uptake of PS-NPs was found to has more potential to enter cells than micro-sized polystyrene PS-MPs that was confirmed by fluorescence microscope, and the intake amount was proportional to the exposure time. PS-MPs had no significant effect on cell viability and apoptosis, but the group treated with high concentration showed low toxicity to oxidative stress level and mitochondrial membrane potential. In addition, the membrane damage caused by PS-MPs was significantly higher than that of PS-NPs. This may be due to the large amount of polystyrene adhering to interstitial, which have a significant negative effect on the cell membrane functions. For the first time human intestinal normal cell lines were used to study the effect of microplastic pollution, which can provide some references for the influence of microplastics on human health in the future.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Tracto Gastrointestinal , Humanos , Estrés Oxidativo , Plásticos/toxicidad , Poliestirenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA