Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
ACS Infect Dis ; 2024 May 12.
Article En | MEDLINE | ID: mdl-38735064

Glucose is widely used in the reconstitution of intravenous medications, which often include antimicrobials. How glucose affects antimicrobial activity has not been comprehensively studied. The present work reports that glucose added to bacteria growing in a rich medium suppresses the bactericidal but not the bacteriostatic activity of several antimicrobial classes, thereby revealing a phenomenon called glucose-mediated antimicrobial tolerance. Glucose, at concentrations corresponding to blood-sugar levels of humans, increased survival of Escherichia coli treated with quinolones, aminoglycosides, and cephalosporins with little effect on minimal inhibitory concentration. Glucose suppressed a ROS surge stimulated by ciprofloxacin. Genes involved in phosphorylated fructose metabolism contributed to glucose-mediated tolerance, since a pfkA deficiency, which blocks the formation of fructose-1,6-bisphosphate, eliminated protection by glucose. Disrupting the pentose phosphate pathway or the TCA cycle failed to alter glucose-mediated tolerance, consistent with an upstream involvement of phosphorylated fructose. Exogenous sodium pyruvate or sodium citrate reversed glucose-mediated antimicrobial tolerance. Both metabolites bypass the effects of fructose-1,6-bisphosphate, a compound known to scavenge hydroxyl radical and chelate iron, activities that suppress ROS accumulation. Treatment with these two compounds constitutes a novel way to mitigate the glucose-mediated antimicrobial tolerance that may exist during intravenous antimicrobial therapy, especially for diabetes patients.

2.
Nanoscale ; 16(18): 9136, 2024 May 09.
Article En | MEDLINE | ID: mdl-38661520

Expression of concern for 'Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery' by Xiaoyong Wang et al., Nanoscale, 2013, 5, 8098-8104, https://doi.org/10.1039/C3NR02797J.


Gadolinium , Magnetic Resonance Imaging , RNA, Small Interfering , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Gadolinium/chemistry , Humans , Ferric Compounds/chemistry , Contrast Media/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Animals
3.
J Control Release ; 365: 1089-1123, 2024 Jan.
Article En | MEDLINE | ID: mdl-38065416

Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.


Extracellular Vesicles , Extracellular Vesicles/metabolism , Drug Delivery Systems/methods , Biomarkers/metabolism , Biological Transport
4.
ACS Appl Bio Mater ; 6(11): 4518-4548, 2023 11 20.
Article En | MEDLINE | ID: mdl-37916787

Peritoneal metastatic cancer is a cancer caused by the direct growth of cancer cells from the primary site through the bloodstream, lymph, or peritoneum, which is a difficult part of current clinical treatment. In the abdominal cavity of patients with metastatic peritoneal cancer, there are usually nodules of various sizes and malignant ascites. Among them, nodules of different sizes can obstruct intestinal movement and form intestinal obstruction, while malignant ascites can cause abdominal distension and discomfort, and even cause patients to have difficulty in breathing. The pathology and physiology of peritoneal metastatic cancer are complex and not fully understood. The main hypothesis is "seed" and "soil"; i.e., cells from the primary tumor are shed and implanted in the peritoneal cavity (peritoneal metastasis). In the last two decades, the main treatment modalities used clinically are cytoreductive surgery (CRS), systemic chemotherapy, intraperitoneal chemotherapy, and combined treatment, all of which help to improve patient survival and quality of life (QOL). However, the small-molecule chemotherapeutic drugs used clinically still have problems such as rapid drug metabolism and systemic toxicity. With the rapid development of nanotechnology in recent years, therapeutic nanoagents for the treatment of peritoneal metastatic cancer have been gradually developed, which has improved the therapeutic effect and reduced the systemic toxicity of small-molecule chemotherapeutic drugs to a certain extent. In addition, nanomaterials have been developed not only as therapeutic agents but also as imaging agents to guide peritoneal tumor CRS. In this review, we describe the etiology and pathological features of peritoneal metastatic cancer, discuss in detail the clinical treatments that have been used for peritoneal metastatic cancer, and analyze the advantages and disadvantages of the different clinical treatments and the QOL of the treated patients, followed by a discussion focusing on the progress, obstacles, and challenges in the use of therapeutic nanoagents in peritoneal metastatic cancer. Finally, therapeutic nanoagents and therapeutic tools that may be used in the future for the treatment of peritoneal metastatic cancer are prospected.


Peritoneal Neoplasms , Humans , Peritoneal Neoplasms/therapy , Peritoneum , Quality of Life , Ascites , Combined Modality Therapy
5.
Microbiol Spectr ; 11(6): e0097523, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37815335

IMPORTANCE: The type 3 secretion system (T3SS) was obtained in many Gram-negative bacterial pathogens, and it is crucial for their pathogenesis. Environmental signals were found to be involved in the expression regulation of T3SS, which was vital for successful bacterial infection in the host. Here, we discovered that L-glutamine (Gln), the most abundant amino acid in the human body, could repress enterohemorrhagic Escherichia coli (EHEC) T3SS expression via nitrogen metabolism and therefore had potential as an antivirulence agent. Our in vitro and in vivo evidence demonstrated that Gln could decline EHEC infection by attenuating bacterial virulence and enhancing host defense simultaneously. We repurpose Gln as a potential treatment for EHEC infection accordingly.


Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Intestinal Diseases , Humans , Virulence , Virulence Factors/metabolism , Glutamine/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Type III Secretion Systems/metabolism , Enterohemorrhagic Escherichia coli/metabolism
6.
Microbiol Spectr ; 11(4): e0119823, 2023 08 17.
Article En | MEDLINE | ID: mdl-37310274

Widespread bacterial resistance among Gram-negative bacteria is rapidly depleting our antimicrobial arsenal. Adjuvants that enhance the bactericidal activity of existing antibiotics provide a way to alleviate the resistance crisis, as new antimicrobials are becoming increasingly difficult to develop. The present work with Escherichia coli revealed that neutralized lysine (lysine hydrochloride) enhances the bactericidal activity of ß-lactams in addition to increasing bacteriostatic activity. When combined, lysine hydrochloride and ß-lactam increased expression of genes involved in the tricarboxylic acid (TCA) cycle and raised reactive oxygen species (ROS) levels; as expected, agents known to mitigate bactericidal effects of ROS reduced lethality from the combination treatment. Lysine hydrochloride had no enhancing effect on the lethal action of fluoroquinolones or aminoglycosides. Characterization of a tolerant mutant indicated involvement of the FtsH/HflkC membrane-embedded protease complex in lethality enhancement. The tolerant mutant, which carried a V86F substitution in FtsH, exhibited decreased lipopolysaccharide levels, reduced expression of TCA cycle genes, and reduced levels of ROS. Lethality enhancement by lysine hydrochloride was abolished by treating cultures with Ca2+ or Mg2+, cations known to stabilize the outer membrane. These data, plus damage observed by scanning electron microscopy, indicate that lysine stimulates ß-lactam lethality by disrupting the outer membrane. Lethality enhancement of ß-lactams by lysine hydrochloride was also observed with Acinetobacter baumannii and Pseudomonas aeruginosa, thereby suggesting that the phenomenon is common among Gram-negative bacteria. Arginine hydrochloride behaved in a similar way. Overall, the combination of lysine or arginine hydrochloride and ß-lactam offers a new way to increase ß-lactam lethality with Gram-negative pathogens. IMPORTANCE Antibiotic resistance among Gram-negative pathogens is a serious medical problem. The present work describes a new study in which a nontoxic nutrient increases the lethal action of clinically important ß-lactams. Elevated lethality is expected to reduce the emergence of resistant mutants. The effects were observed with significant pathogens (Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa), indicating widespread applicability. Examination of tolerant mutants and biochemical measurements revealed involvement of endogenous reactive oxygen species in response to outer membrane perturbation. These lysine hydrochloride-ß-lactam data support the hypothesis that lethal stressors can stimulate the accumulation of ROS. Genetic and biochemical work also revealed how an alteration in a membrane protease, FtsH, abolishes lysine stimulation of ß-lactam lethality. Overall, the work presents a method for antimicrobial enhancement that should be safe, easy to administer, and likely to apply to other nutrients, such as arginine.


Lysine , beta-Lactams , beta-Lactams/pharmacology , Lysine/metabolism , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Gram-Negative Bacteria , Escherichia coli/genetics , Pseudomonas aeruginosa/genetics , Microbial Sensitivity Tests
7.
Food Chem ; 424: 136338, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37207602

Red Monascus pigments, a series of natural azaphilone alkaloids, have been utilized in China as a traditional food colorant for over 1000 years. However, instability under an acidic condition is its drawback. A new strain of Talaromyces amestolkiae was isolated in the present work, which produced the azaphilone talaromycorubrin and the corresponding azaphilone alkaloid (N-MSG-talaromycorubramine) exhibiting good stability even at pH below 3. The azaphilone alkaloid with acidic stability, an alternative of Chinese traditional red Monascus pigments, is potential for application as natural food colorant in acidic foods. The acidic stability of azaphilone alkaloid also benefits for direct fermentation of N-MSG-talaromycorubramine under a low pH condition. More importantly, correlation relationship between the terminal carboxylation of branched carbon chain of azaphilone and the stability of azaphilone alkaloids under an acidic condition is set up for the first time, which makes designing other acidic stable azaphilone alkaloids via genetic engineering become possible.


Food Coloring Agents , Monascus , Talaromyces , Pigments, Biological , Talaromyces/genetics , Monascus/genetics
8.
J Cardiothorac Surg ; 18(1): 39, 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36653806

BACKGROUND: Aortic dissection (AD) is a rare disease with high mortality for which no effective diagnostic biomarkers are available. Human cytomegalovirus (HCMV) infection is an important cause of the occurrence and progression of many diseases, but the relationship between HCMV infection and AD is not clear. METHODS: In this study, we first used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine the expression profile of 25 HCMV-encoded microRNAs (HCMV miRNAs) in the plasma within a training set consisting of 20 AD patients and 20 healthy controls. Then, abnormal expressed HCMV miRNAs were verified in a validation set of 12 AD patients and 12 healthy controls. In addition, HCMV infection was detected in the third cohort consisting of 20 AD patients and 20 healthy controls. RESULTS: The 95% quantile of the expression levels of HCMV miRNAs in the training set was used as the threshold for distinction between AD patients and healthy controls. The proportion of individuals with high level of five types of HCMV miRNAs was significantly different between AD patients and healthy controls. In the validation set, only the proportion of individuals with high levels of hcmv-miR-UL112-5p and hcmv-miR-UL22A-5p, two of the five HCMV miRNAs obtained in the preliminary screening, showed significant difference between AD patients and healthy controls. In the third cohort, there was no significant difference in HCMV DNA levels and anti-HCMV IgG concentrations between AD patients and healthy controls. CONCLUSIONS: The HCMV miRNAs levels in plasma differed in AD patients and healthy controls. This finding may contribute to a further understanding of the relationship between HCMV infection and AD and are worthy of future research on the diagnosis and etiology of AD.


Cytomegalovirus Infections , MicroRNAs , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
9.
J Environ Manage ; 323: 116199, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36126595

Permeable pavements can reduce the amount of surface runoff and peak flow rate and delay the occurrence of peak flow by allowing water to infiltrate underground similar to natural undeveloped catchments. Such suite of benefits of permeable pavements have made them one of the preferred stormwater control measures in most of the integrated land and water programs. Waste tire permeable pavements (WTPPs), as a relatively new permeable pavement technology, are designed with a surface layer made of up to 50% recycled tire particles. This study aims to investigate the hydrological performance of WTPPs to divert surface runoff and their impact on water quality. A large-scale trial in Australia was constructed and a comprehensive field performance monitoring program including double-ring infiltrometer tests and water quality testing was conducted to evaluate the performance of WTPP in real field conditions. Quality assurance tests on samples of the WTPP surface layer were conducted for permeability in the laboratory, and numerical simulations were done to estimate the surface runoff and investigate the sensitivity of the results to important design parameters. The physically-based models used for numerical simulations were developed in MUSIC X by replicating the layers of the constructed permeable pavement system as well as the impervious part of the trial site. The results indicated that the constructed system is capable of mitigating the surface runoff from the studied site, although only 25% of the discharge area was covered with WTPP. The infiltration rate of the WTPP over nine months with and without maintenance was studied. The results revealed that the infiltration rates even in areas without maintenance after nine months were found to be above the recommended values from ASCE permeable pavements task committee, but lower than the areas that were regularly maintained highlighting the importance of a regular maintenance regime for permeability recovery over time. Water quality tests were done on samples taken over a 17 month-long period indicating that the WTPP system successfully reduced most of the studied pollutants and chemical indicators, including most of the heavy metals, total suspended solids (69%) and turbidity (88%) by physically filtering the water.


Environmental Pollutants , Metals, Heavy , Hydrology , Permeability , Rain , Water Movements , Water Quality
10.
Proc Natl Acad Sci U S A ; 119(23): e2118566119, 2022 06 07.
Article En | MEDLINE | ID: mdl-35648826

Recent work indicates that killing of bacteria by diverse antimicrobial classes can involve reactive oxygen species (ROS), as if a common, self-destructive response to antibiotics occurs. However, the ROS-bacterial death theory has been challenged. To better understand stress-mediated bacterial death, we enriched spontaneous antideath mutants of Escherichia coli that survive treatment by diverse bactericidal agents that include antibiotics, disinfectants, and environmental stressors, without a priori consideration of ROS. The mutants retained bacteriostatic susceptibility, thereby ruling out resistance. Surprisingly, pan-tolerance arose from carbohydrate metabolism deficiencies in ptsI (phosphotransferase) and cyaA (adenyl cyclase); these genes displayed the activity of upstream regulators of a widely shared, stress-mediated death pathway. The antideath effect was reversed by genetic complementation, exogenous cAMP, or a Crp variant that bypasses cAMP binding for activation. Downstream events comprised a metabolic shift from the TCA cycle to glycolysis and to the pentose phosphate pathway, suppression of stress-mediated ATP surges, and reduced accumulation of ROS. These observations reveal how upstream signals from diverse stress-mediated lesions stimulate shared, late-stage, ROS-mediated events. Cultures of these stable, pan-tolerant mutants grew normally and were therefore distinct from tolerance derived from growth defects described previously. Pan-tolerance raises the potential for unrestricted disinfectant use to contribute to antibiotic tolerance and resistance. It also weakens host defenses, because three agents (hypochlorite, hydrogen peroxide, and low pH) affected by pan-tolerance are used by the immune system to fight infections. Understanding and manipulating the PtsI-CyaA-Crp­mediated death process can help better control pathogens and maintain beneficial microbiota during antimicrobial treatment.


Anti-Infective Agents , Colicins , Cyclic AMP Receptor Protein , Escherichia coli Proteins , Escherichia coli , Monosaccharide Transport Proteins , Oxidative Stress , Phosphoenolpyruvate Sugar Phosphotransferase System , Anti-Infective Agents/pharmacology , Colicins/metabolism , Cyclic AMP/metabolism , Cyclic AMP Receptor Protein/metabolism , Drug Tolerance , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Reactive Oxygen Species/metabolism
11.
Yi Chuan ; 44(2): 96-106, 2022 Feb 20.
Article En | MEDLINE | ID: mdl-35210212

As an important precursor for DNA synthesis, the four deoxyribonucleoside triphosphates (dATP, dTTP, dGTP, and dCTP) are necessary raw materials for DNA replication, recombination, and repair in cells. The correct synthesis and integrity of DNA are important manifestations of the genome stability, so the stability of the dNTP library state is essential to maintain the stability of the genome and the cell. In terms of the quality of the dNTP library, the incorporation of some heterogeneous dNTPs, such as oxidized dNTPs, into DNA can easily cause base substitutions and even DNA breaks and rearrangements, which will greatly damage the stability of the genome. At the same time, the cell has also evolved the corresponding NTP pyrophosphatase to remove it, and to correct the damaged DNA and repair the DNA gap by forming a DNA damage repair network. In terms of the number of dNTP libraries, the imbalance of the dNTP concentration and ratio will also cause base and frameshift mutations, which will also cause genome instability. As a result, cells have evolved a huge enzyme-controlled network to carry them out under precise control. This article mainly reviews the potential harm of damage to dNTP library components in cells, the clearance of damaged dNTPs, the regulation on the balance between dNTP library components, and finally discusses clinical diseases related to dNTP library homeostasis. It provides insights on the research of the correlation between the stability of the cellular dNTP library and the genome, and finally provides some theoretical basis for the treatment of related diseases.


DNA Replication , Deoxyribonucleotides , Deoxyribonucleotides/genetics , Deoxyribonucleotides/metabolism , Genome , Genomic Instability , Homeostasis , Humans
12.
mSphere ; 6(5): e0054521, 2021 10 27.
Article En | MEDLINE | ID: mdl-34585961

Most studies of gut microbiota have focused on relationships between a specific disease and the presence/abundance of one or a few bacterial species/genera. Whether the spatial and temporal distribution of gut microbiota, as a whole, affects or correlates with health is unknown, largely due to the absence of tools for dynamically monitoring the overall gut microbiota landscape inside living subjects. Here, we describe a novel, noninvasive, live imaging method for gut microbiota using 2-deoxy-2-[18F]fluoro-d-sorbitol (18F-FDS), a compound that specifically labeled gut bacteria in mice and hamsters following oral administration. Positron emission tomography-computed tomography (PET-CT) scanning showed that the radiolabel signal was concentrated in the gut (especially the large intestine), was absent when mice gut microbiota was depleted by antibiotic treatment, and was restored after transplanting antibiotic-treated mice with a fecal or probiotic bacterial mixture. Thus, 18F-FDS images microbiota, not gut tissue. The tissue distribution of 18F-FDS was the highest in the gut (∼3-fold higher than average), in contrast to 2-deoxy-2-[18F]fluoro-d-glucose, which concentrated in brain and many other organs. 2-[18F]fluoro-aminobenzoic acid, another bacterium-specific radioactive tracer, was unsuited for gut microbiota imaging due to unexpected stomach retention following oral administration. When similar gut microbiota imaging was done with hamsters, the spatial resolution increased significantly over that with mice, suggesting that even higher spatial resolution can be achieved with humans or large animals. Thus, our work establishes a new tool for noninvasive, live imaging of gut microbiota; the new tool may enable exploration of relationships between gut microbiota landscape and diseases in clinical settings. IMPORTANCE Gut microbiota dysbiosis correlates with many diseases, but such correlations derive mostly from relationships between one or a few bacteria and a particular disease. Since microbiota resemble complex forest ecosystems more closely than individual patches of trees, the overall landscape (spatial and temporal distribution) of gut bacteria may also affect/reflect disease development. Such a possibility has not been explored due to a lack of tools for directly visualizing natural landscape patterns of gut microbiota. The present work identified 2-deoxy-2-[18F]fluoro-d-sorbitol as a gut microbiota-specific radioactive tracer and developed a novel PET-CT scan-based imaging method that enables noninvasive, real-time imaging of the overall gut bacterial landscape. The method showed increased spatial resolution when hamsters replaced mice, suggesting that even higher spatial resolution could be achieved with larger animals such as humans. This novel technology establishes the feasibility of investigating spatial-temporal distribution dynamics of gut microbiota with many human diseases.


Gastrointestinal Microbiome , Positron Emission Tomography Computed Tomography , Animals , Cricetinae , Female , Gastrointestinal Tract , Male , Mice , Mice, Inbred C57BL , Sorbitol/administration & dosage , Sorbitol/analogs & derivatives , Spatio-Temporal Analysis
13.
Yi Chuan ; 43(8): 747-757, 2021 Aug 20.
Article Zh | MEDLINE | ID: mdl-34413015

The Cpx (conjugative pilus expression) two-component signal transduction system is a complex envelope stress response system in Gram-negative bacteria, which can sense a variety of extracellular stimuli that enter the signaling pathway at different points. The phosphorylation of the CpxR, the cytoplasmic cognate response regulator of the Cpx system, can lead to changes in the expression of genes encoding proteins involved in inner and outer membrane functions. Activation of the Cpx system contributes to bacterial resistance/tolerance to certain antibiotics and acidic stress. In this review, we summarize the composition, and the mechanisms of signal detection, and the transcriptional regulation of the Cpx system, with a goal to provide guidance for the study of the regulatory network of the Cpx system and its important regulatory roles in bacterial physiology.


Bacterial Proteins , Signal Transduction , Bacterial Proteins/genetics , Gram-Negative Bacteria
14.
Article En | MEDLINE | ID: mdl-33257448

Widespread antimicrobial resistance encourages repurposing/refining of nonantimicrobial drugs for antimicrobial indications. Gallium nitrate (GaNt), an FDA-approved medication for cancer-related hypercalcemia, recently showed good activity against several clinically significant bacteria. However, the mechanism of GaNt antibacterial action is still poorly understood. In the present work, resistant and tolerant mutants of Escherichia coli were sought via multiple rounds of killing by GaNt. Multiround-enrichment yielded no resistant mutant; whole-genome sequencing of one representative GaNt-tolerant mutant uncovered mutations in three genes (evgS, arpA, and kdpD) potentially linked to protection from GaNt-mediated killing. Subsequent genetic analysis ruled out a role for arpA and kdpD, but two gain-of-function mutations in evgS conferred tolerance. The evgS mutation-mediated GaNt tolerance depended on EvgS-to-EvgA phosphotransfer; EvgA-mediated upregulation of GadE. YdeO, and SarfA also contributed to tolerance, the latter two likely through their regulation of GadE. GaNt-mediated killing of wild-type cells correlated with increased intracellular reactive oxygen species (ROS) accumulation that was abolished by the evgS-tolerant mutation. Moreover, GaNt-mediated killing was mitigated by dimethyl sulfoxide, and the evgS-tolerant mutation upregulated genes encoding enzymes involved in ROS detoxification and in the glyoxylate shunt of the tricarboxylic acid (TCA) cycle. Collectively, these findings indicate that GaNt kills bacteria through elevation of ROS; gain-of-function mutations in evgS confer tolerance by constitutively activating the EvgA-YdeO/GadE cascade of acid resistance pathways and by preventing GaNt-stimulated ROS accumulation by upregulating ROS detoxification and shifting TCA cycle carbon flux. The striking lethal activity of GaNt suggests that clinical use of the agent may not quickly lead to resistance.


Anti-Infective Agents , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gain of Function Mutation , Gallium , Mutation , Protein Kinases/genetics
15.
Int Immunopharmacol ; 42: 115-121, 2017 Jan.
Article En | MEDLINE | ID: mdl-27912147

Connective tissue disease related pulmonary arterial hypertension (CTD-PAH) is characterized by vascular remodeling, endothelial dysfunction and inflammation. Endocan is a novel endothelial dysfunction marker. The aim of the present study was to investigate the role of endocan in CTD-PAH. Monocrotaline (MCT)-induced PAH rats were used as the CTD-PAH model. Short hairpin RNA packed in a lentiviral vector used to inhibit endocan expression was intratracheally instilled in rats prior to the MCT injection. Endocan was found to be increased in the serum and lung of MCT-induced PAH rats. Short hairpin RNA mediated knockdown of endocan significantly decreased right ventricular systolic pressure, attenuated pulmonary remodeling and inflammatory responses in the lung. In the in vitro study, tumor necrosis factor-α (TNF-α) exposure caused increased endocan expression in the primary cultured rat pulmonary microvascular endothelial cells (RPMECs). Endocan knockdown inhibited the permeability increase and adhesion molecules secretion in RPMECs induced by TNF-α. In addition, TNF-α induced MAPK activation was blocked when endocan gene was knocked down. These data demonstrate that endocan may play an important role in the development of CTD-PAH. This study provides novel evidence to better understand the pathogenesis of CTD-PAH, which may be beneficial for the treatment of this disease.


Connective Tissue/pathology , Endothelial Cells/physiology , Hypertension, Pulmonary/metabolism , Proteoglycans/metabolism , Pulmonary Artery/pathology , Animals , Blood Pressure/genetics , Cells, Cultured , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Male , Monocrotaline , Proteoglycans/genetics , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Vascular Remodeling/genetics
16.
Yi Chuan ; 38(10): 902-909, 2016 10 20.
Article En | MEDLINE | ID: mdl-27806931

Misuse and overuse of antibiotics have led to serious resistance problems that pose a grave threat to human health. How to solve the increasing antibiotic resistance problem is a huge challenge. Besides the traditional strategy of developing novel antimicrobial agents, exploring ways to enhance the lethal activity of antibiotics currently available is another feasible approach to fight against resistance. Recent studies showed that ROS plays an important role in regulating both antibiotic resistance and antimicrobial lethality. ROS produced by sublethal levels of antibiotic induces antibiotic resistance through activating drug efflux pumps via MarR(Multiple antibiotic resistance repressor)-MarA(Multiple antibiotic resistance activator), triggers the protective function against stress via SoxR (Superoxide response transcriptional regulator)-SoxS (Superoxide response transcription factor), and promotes mutagenesis by induction of SOS system. On the contrary, ROS triggered by lethal levels of antibiotic promotes bacterial killing and suppresses resistance. In addition to the concentration of antibiotic, the role of ROS in mediating antimicrobial resistance and bacterial killing is also regulated by a series of genetic regulators (e.g. MazEF, Cpx, SoxR, MarRAB). Thus, how ROS contribute to antimicrobial resistance and bacterial killing is complex. In this review, we summarized the mechanism of ROS in regulating antibiotic resistance and antimicrobial lethality, which may provide references and guidance for finding new ways to enhance antimicrobial lethality of currently available antimicrobials and battling antibiotic resistance.


Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Bacterial Infections/microbiology , Drug Resistance, Bacterial , Reactive Oxygen Species/metabolism , Animals , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans
17.
Antimicrob Agents Chemother ; 60(8): 5054-8, 2016 08.
Article En | MEDLINE | ID: mdl-27246776

The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays.


Anti-Infective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Escherichia coli/drug effects , Ampicillin/pharmacology , Escherichia coli/metabolism , Kanamycin/pharmacology , Microbial Sensitivity Tests , Quinolones/pharmacology , Reactive Oxygen Species/metabolism
18.
Acta Biochim Biophys Sin (Shanghai) ; 48(6): 544-53, 2016 Jun.
Article En | MEDLINE | ID: mdl-27174874

Deep-sequencing of bacterial transcriptomes using RNA-Seq technology has made it possible to identify small non-coding RNAs, RNA molecules which regulate gene expression in response to changing environments, on a genome-wide scale in an ever-increasing range of prokaryotes. However, a simple and reliable automated method for identifying sRNA candidates in these large datasets is lacking. Here, after generating a transcriptome from an exponential phase culture of Mycobacterium tuberculosis H37Rv, we developed and validated an automated method for the genome-wide identification of sRNA candidate-containing regions within RNA-Seq datasets based on the analysis of the characteristics of reads coverage maps. We identified 192 novel candidate sRNA-encoding regions in intergenic regions and 664 RNA transcripts transcribed from regions antisense (as) to open reading frames (ORF), which bear the characteristics of asRNAs, and validated 28 of these novel sRNA-encoding regions by northern blotting. Our work has not only provided a simple automated method for genome-wide identification of candidate sRNA-encoding regions in RNA-Seq data, but has also uncovered many novel candidate sRNA-encoding regions in M. tuberculosis, reinforcing the view that the control of gene expression in bacteria is more complex than previously anticipated.


Mycobacterium tuberculosis/genetics , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Sequence Analysis, RNA/methods , Automation, Laboratory , Chromosome Mapping , Genome, Bacterial , High-Throughput Nucleotide Sequencing , RNA, Transfer/genetics , Transcriptome
19.
Nanoscale ; 5(17): 8098-104, 2013 Sep 07.
Article En | MEDLINE | ID: mdl-23884164

This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability.


Ferric Compounds/chemistry , Gadolinium/chemistry , Nanoparticles/chemistry , Cell Survival/drug effects , Contrast Media/chemistry , Contrast Media/toxicity , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HCT116 Cells , Humans , Magnetic Resonance Imaging , Microscopy, Confocal , Nanoparticles/toxicity , Polyethyleneimine/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Transfection
...