Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biol Res ; 52(1): 48, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31466525

RESUMEN

BACKGROUND: Light exposure is a common stress factor in in vitro manipulation of embryos in the reproductive center. Many studies have shown the deleterious effects of high-intensity light exposure in different animal embryos. However, no transcriptomic studies have explored the light-induced injury and response in preimplantation embryos. RESULTS: Here, we adopt different time-courses and illumination intensities to treat mouse embryos at the 2-cell stage and evaluate their effects on blastulation. Meanwhile, single-cell transcriptomes from the 2-cell to blastocyst stage were analyzed after high-intensity light exposure. These data show that cells at each embryonic stage can be categorized into different light conditions. Further analyses of differentially expressed genes and GO terms revealed the light-induced injury as well as the potential repair response after high-intensity lighting. Maternal-to-zygote transition is also affected by the failure to remove maternal RNAs and deactivate zygotic genome expression. CONCLUSION: Our work revealed an integrated response to high-intensity lighting, involving morphological changes, long-lasting injury effects, and intracellular damage repair mechanisms.


Asunto(s)
Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Luz/efectos adversos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Blastocisto , Femenino , Ratones , Ratones Endogámicos C57BL
2.
Biol. Res ; 52: 48-48, 2019. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1505768

RESUMEN

BACKGROUND: Light exposure is a common stress factor in in vitro manipulation of embryos in the reproductive center. Many studies have shown the deleterious effects of high-intensity light exposure in different animal embryos. However, no transcriptomic studies have explored the light-induced injury and response in preimplantation embryos. RESULTS: Here, we adopt different time-courses and illumination intensities to treat mouse embryos at the 2-cell stage and evaluate their effects on blastulation. Meanwhile, single-cell transcriptomes from the 2-cell to blastocyst stage were analyzed after high-intensity light exposure. These data show that cells at each embryonic stage can be categorized into different light conditions. Further analyses of differentially expressed genes and GO terms revealed the light-induced injury as well as the potential repair response after high-intensity lighting. Maternal-to-zygote transition is also affected by the failure to remove maternal RNAs and deactivate zygotic genome expression. CONCLUSION: Our work revealed an integrated response to high-intensity lighting, involving morphological changes, long-lasting injury effects, and intracellular damage repair mechanisms.


Asunto(s)
Animales , Femenino , Ratones , Análisis de Secuencia de ARN , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Análisis de la Célula Individual , Luz/efectos adversos , Blastocisto , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA