Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Pharmaceutics ; 16(1)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38258135

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.

2.
Polymers (Basel) ; 16(2)2024 Jan 06.
Article En | MEDLINE | ID: mdl-38256971

The applicability of beam-plasma chemical reactors generating cold hybrid plasma for the production of noncytotoxic polymeric surfaces with high hydrophilicity and good biocompatibility with human fibroblast culture and human red blood cells was studied. Oxygen hybrid plasma was excited by the joint action of a continuous scanning electron beam and a capacity-coupled RF-gas discharge. Experiments showed that hybrid plasma treatment caused polar oxygen-containing functional group formation in the surface layer of poly (ethylene terephthalate) films. No thermal or radiative damage in tested polymer samples was found. The plasma-modified polymers turned out to be noncytotoxic and revealed good biocompatibility with human fibroblasts BJ-5ta as well as lower hemolytic activity than untreated poly (ethylene terephthalate). Experiments also demonstrated that no phenomena caused by the electrostatic charging of polymers occur in hybrid plasma because the electron beam component of hybrid plasma eliminates the item charge when it is treated. The electron beam can effectively control the reaction volume geometry as well as the fluxes of active plasma particles falling on the item surface. This provides new approaches to the production of abruptly structured patterns or smooth gradients of functionalities on a plane and 3D polymeric items of complicated geometry.

3.
Int J Biol Macromol ; 260(Pt 2): 129514, 2024 Mar.
Article En | MEDLINE | ID: mdl-38237825

Electrospun biomimetic materials based on polyester of natural origin poly-3-hudroxybutyrate (PHB) modified with hemin (Hmi) and fibrinogen (Fbg) represent a great interest and are potentially applicable in various fields. Here, we describe formulation of the new fibrous PHB-Fbg and PHB-Hmi-Fbg materials with complex structure for biomedical application. The average diameter of the fibers was 3.5 µm and 1.8 µm respectively. Hmi presence increased porosity from 80 % to 94 %, significantly reduced the number of defects, ensured the formation of a larger number of open pores, and improved mechanical properties. Hmi presence significantly improved the molding properties of the material. Hmi facilitated effective Fbg adsorption on the of the PHB wound-healing material, ensuring uniform localization of the protein on the surface of the fibers. Next, we evaluated cytocompatibility, cell behavior, and open wound healing in mice. The results demonstrated that PHB-Fbg and PHB-Hmi-Fbg electrospun materials had pronounced properties and may be promising for early-stage wound healing - the PHB-Hmi-Fbg sample accelerated wound closure by 35 % on the 3rd day, and PHB-Hmi showed 45 % more effective wound closure on the 15th day.


Biomimetic Materials , Hemostatics , Mice , Animals , Fibrinogen , Wound Healing , Biomimetic Materials/pharmacology , Polyesters/chemistry
4.
Dalton Trans ; 53(3): 1048-1057, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38099594

Metal-organic frameworks (MOFs) are widely used in the biomedical industry. In this study, we developed a new method for obtaining a metal-organic structure of strontium and terephthalic acid, Sr(BDC), and an alternative activation method for removing DMF from the pores. Sr(BDC) MOFs were successfully prepared and characterized by XRD, FTIR, TGA, and SEM. The importance of the activation steps was confirmed by TGA, which showed that the Sr(BDC)(DMF) sample can contain up to a quarter of the solvent (DMF) before activation. In our study, IR spectroscopy confirmed the possibility of removing DMF by ethanol treatment from the Sr-BDC crystals. A comparative analysis of the effect of the activation method on the specific surface and pore size of Sr-BDC and its sorption properties using the model drug doxorubicin showed that due to the undeveloped surface of the Sr-(BDC)(DMF) sample, it is not possible to obtain an adsorption isotherm and determine the pore size distribution, thus showing the importance of the activation step. Cytotoxicity and apoptosis assays were carried out to study the biological activity of MOFs, and we observed relatively low toxicity in the tested concentration range after 48 h, with over 92% cell survival for Sr(BDC)(DMF) and Sr(BDC)(260 °C), with a decrease only in the highest concentration (800 mg L-1). Similar results were observed in our apoptosis assays, as they revealed low apoptotic population generation of 2.52%, 3.23%, and 2.77% for Sr(BDC)(DMF), Sr(BDC) and Sr(BDC)(260 °C), respectively. Overall, the findings indicate that ethanol-activated Sr(BDC) shows potential as a safe and effective material for drug delivery.


Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metals , Ethanol , Hydrogen-Ion Concentration
5.
Pharmaceutics ; 15(4)2023 Apr 19.
Article En | MEDLINE | ID: mdl-37111769

Photodynamic therapy (PDT) in oncology is characterized by low invasiveness, minimal side effects, and little tissue scarring. Increasing the selectivity of PDT agents toward a cellular target is a new approach intended to improve this method. This study is devoted to the design and synthesis of a new conjugate based on meso-arylporphyrin with a low-molecular-weight tyrosine kinase inhibitor, Erlotinib. A nano-formulation based on Pluronic F127 micelles was obtained and characterized. The photophysical and photochemical properties and biological activity of the studied compounds and their nano-formulation were studied. A significant, 20-40-fold difference between the dark and photoinduced activity was achieved for the conjugate nanomicelles. After irradiation, the studied conjugate nanomicelles were 1.8 times more toxic toward the EGFR-overexpressing cell line MDA-MB-231 compared to the conditionally normal NKE cells. The IC50 was 0.073 ± 0.014 µM for the MDA-MB-231 cell line and 0.13 ± 0.018 µM for NKE cells after irradiation for the target conjugate nanomicelles.

6.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Article En | MEDLINE | ID: mdl-36677989

The effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.

7.
J Sep Sci ; 46(3): e2200731, 2023 Feb.
Article En | MEDLINE | ID: mdl-36427291

While histone deacetylase inhibitors, such as vorinostat, demonstrate a significant effect against hematological cancers, their application for solid tumor treatment is limited. However, there is strong evidence that combinatorial administration of vorinostat and genotoxic agents (e.g., doxorubicin) enhances the antitumoral action of both drugs against tumors. We developed a high-performance liquid chromatography method for the simultaneous determination of doxorubicin and vorinostat in polymeric nanoparticles designed to provide the parenteral administration of both drugs and increase their safety profile. We performed separation on Nucleodur C-18 Gravity column with a mixture of 10 mM potassium dihydrogen phosphate buffer pH 3.9:ACN (90:10 v/v) as mobile phase at 240 nm. The method was linear within the concentration range of 4.2-52.0 µg/ml for both drugs with limits of detection and quantification of 3.5 and 10.7 µg/ml for doxorubicin and 2.5 and 7.7 µg/ml for vorinostat, respectively. The method was precise and accurate over the concentration range of analysis. Drug loading was 5.4% for doxorubicin and 0.8% for vorinostat. Degradation of doxorubicin after irradiation was less than 5%, while the amount of vorinostat decreased at 88% under the same conditions. Thus, the validated method could be adopted for routine simultaneous analysis of doxorubicin and vorinostat in polymeric nanoparticles.


Nanoparticles , Neoplasms , Humans , Vorinostat , Chromatography, High Pressure Liquid/methods , Doxorubicin/analysis , Doxorubicin/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Pharmaceutical Preparations
8.
Polymers (Basel) ; 16(1)2023 Dec 26.
Article En | MEDLINE | ID: mdl-38201737

Unsaturated fatty acids, such as oleic acid (OA) and linoleic acid (LA), are promising antimicrobial and cytostatic agents. We modified OA and LA with thymol (TOA and TLA, respectively) to expand their bioavailability, stability, and possible applications, and encapsulated these derivatives in polymeric nanoparticles (TOA-NPs and TLA-NPs, respectively). Prior to synthesis, we performed mathematical simulations with PASS and ADMETlab 2.0 to predict the biological activity and pharmacokinetics of TOA and TLA. TOA and TLA were synthesized via esterification in the presence of catalysts. Next, we formulated nanoparticles using the single-emulsion solvent evaporation technique. We applied dynamic light scattering, Uv-vis spectroscopy, release studies under gastrointestinal (pH 1.2-6.8) and blood environment simulation conditions (pH 7.4), and in vitro biological activity testing to characterize the nanoparticles. PASS revealed that TOA and TLA have antimicrobial and anticancer therapeutic potential. ADMETlab 2.0 provided a rationale for TOA and TLA encapsulation. The nanoparticles had an average size of 212-227 nm, with a high encapsulation efficiency (71-93%), and released TOA and TLA in a gradual and prolonged mode. TLA-NPs possessed higher antibacterial activity against B. cereus and S. aureus and pronounced cytotoxic activity against MCF-7, K562, and A549 cell lines compared to TOA-NPs. Our findings expand the biomedical application of fatty acids and provide a basis for further in vivo evaluation of designed derivatives and formulations.

9.
Pharmaceutics ; 14(11)2022 Oct 29.
Article En | MEDLINE | ID: mdl-36365151

Currently, molecular dynamics simulation is being widely applied to predict drug-polymer interaction, and to optimize drug delivery systems. Our study describes a combination of in silico and in vitro approaches aimed at improvement in polymer-based nanoparticle design for cancer treatment. We applied the PASS service to predict the biological activity of novel carboplatin derivatives. Subsequent molecular dynamics simulations revealed the dependence between the drug-polymer binding energy along with encapsulation efficacy, drug release profile, and the derivatives' chemical structure. We applied ICP-MS analysis, the MTT test, and hemolytic activity assay to evaluate drug loading, antitumor activity, and hemocompatibility of the formulated nanoparticles. The drug encapsulation efficacy varied from 0.2% to 1% and correlated with in silico modelling results. The PLGA nanoparticles revealed higher antitumor activity against A549 human non-small-cell lung carcinoma cells compared to non-encapsulated carboplatin derivatives with IC50 values of 1.40-23.20 µM and 7.32-79.30 µM, respectively; the similar cytotoxicity profiles were observed against H69 and MCF-7 cells. The nanoparticles efficiently induced apoptosis in A549 cells. Thus, nanoparticles loaded with novel carboplatin derivatives demonstrated high application potential for anticancer therapy due to their efficacy and high hemocompatibility. Our results demonstrated the combination of in silico and in vitro methods applicability for the optimization of encapsulation and antitumor efficacy in novel drug delivery systems design.

10.
Nanomedicine (Lond) ; 17(18): 1217-1235, 2022 08.
Article En | MEDLINE | ID: mdl-36136593

Background: Serious side effects caused by paclitaxel formulation, containing toxic solubilizer Cremophor® EL, and its nonspecific accumulation greatly limit clinical paclitaxel application. Aim: To design paclitaxel-loaded copolymer of lactic and glycolic acids nanoparticles decorated with alpha-fetoprotein third domain (rAFP3d-NP) to increase paclitaxel safety profile. Methods: rAFP3d-NP was obtained via carbodiimide technique. Results: The particles were characterized with high paclitaxel loading content of 5% and size of 280 nm. rAFP3d-NP revealed biphasic profile with 67% release of paclitaxel during 220 h. Increased area under the curveinf and mean residence time values after rAFP3d-NP administration confirmed prolonged blood circulation compared with paclitaxel. rAFP3d-NP demonstrated significant tumor growth inhibition at 4T1 and SKOV-3 models. Conclusion: rAFP3d-NP is a promising delivery system for paclitaxel and can be applied similarly for delivery of other hydrophobic drugs.


Nanoparticles , Neoplasms , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , alpha-Fetoproteins , Nanoparticles/chemistry , Paclitaxel/chemistry , Polymers/chemistry , Neoplasms/drug therapy , Cell Line, Tumor , Drug Carriers/chemistry
11.
Int J Mol Sci ; 23(6)2022 Mar 14.
Article En | MEDLINE | ID: mdl-35328540

The conventional targeted delivery of chemotherapeutic and diagnostic agents utilizing nanocarriers is a promising approach for cancer theranostics. Unfortunately, this approach often faces hindered tumor access that decreases the therapeutic index and limits the further clinical translation of a developing drug. Here, we demonstrated a strategy of simultaneously double-targeting the drug to two distinct cites of tumor tissue: the tumor endothelium and cell surface receptors. We used fourth-generation polyamideamine dendrimers modified with a chelated Gd and functionalized with selectin ligand and alpha-fetoprotein receptor-binding peptide. According to the proposed strategy, IELLQAR peptide promotes the conjugate recruitment to the tumor inflammatory microenvironment and enhances extravasation through the interaction of nanodevice with P- and E-selectins expressed by endothelial cells. The second target moiety-alpha-fetoprotein receptor-binding peptide-enhances drug internalization into cancer cells and the intratumoral retention of the conjugate. The final conjugate contained 18 chelated Gd ions per dendrimer, characterized with a 32 nm size and a negative surface charge of around 18 mV. In vitro contrasting properties were comparable with commercially available Gd-chelate: r1 relaxivity was 3.39 for Magnevist and 3.11 for conjugate; r2 relaxivity was 5.12 for Magnevist and 4.81 for conjugate. By utilizing this dual targeting strategy, we demonstrated the increment of intratumoral accumulation, and a remarkable enhancement of antitumor effect, resulting in high-level synergy compared to monotargeted conjugates. In summary, the proposed strategy utilizing tumor tissue double-targeting may contribute to an enhancement in drug and diagnostic accumulation in aggressive tumors.


Dendrimers , Neoplasms , Cell Line, Tumor , Dendrimers/chemistry , Endothelial Cells/pathology , Gadolinium DTPA , Humans , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Microenvironment , alpha-Fetoproteins
12.
Pharmaceutics ; 14(3)2022 Mar 05.
Article En | MEDLINE | ID: mdl-35335951

Capsules with shells based on nanoparticles of different nature co-assembled at the interface of liquid phases of emulsion are promising carriers of lipophilic drugs. To obtain such capsules, theoretically using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and experimentally using dynamic light-scattering (DLS) and transmission electron microscopy (TEM) methods, the interaction of like-charged silica nanoparticles and detonation nanodiamonds in an aqueous solution was studied and their ratios selected for the formation of submicron-sized colloidosomes. The resulting colloidosomes were modified with additional layers of nanoparticles and polyelectrolytes, applying LbL technology. As a model anti-cancer drug, thymoquinone was loaded into the developed capsules, demonstrating a significant delay of the release as a result of colloidosome surface modification. Fluorescence flow cytometry and confocal laser scanning microscopy showed efficient internalization of the capsules by MCF7 cancer cells. The obtained results demonstrated a high potential for nanomedicine application in the field of the drug-delivery system development.

13.
Int J Mol Sci ; 24(1)2022 Dec 25.
Article En | MEDLINE | ID: mdl-36613788

A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.


Chlorophyllides , Photochemotherapy , Porphyrins , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , HeLa Cells , Photochemotherapy/methods , Porphyrins/pharmacology , Porphyrins/chemistry
14.
Antioxidants (Basel) ; 10(12)2021 Dec 13.
Article En | MEDLINE | ID: mdl-34943088

Pheophorbide a 17-diethylene glycol ester (XL-8), is a promising high-active derivative of known photosensitizer chlorin e6 used in photodynamic therapy. However, high lipophilicity and poor tumor accumulation limit XL-8 therapeutic application. We developed a novel XL-8 loaded with poly(D,L-lactide-co-glycolide) nanoparticles using the single emulsion-solvent evaporation method. The nanoparticles possessed high XL-8 loading content (4.6%) and encapsulation efficiency (87.7%) and a small size (182 ± 19 nm), and negative surface charge (-22.2 ± 3.8 mV) contributed to a specific intracellular accumulation. Sustained biphasic XL-8 release from nanoparticles enhanced the photosensitizer photostability upon irradiation that could potentially reduce the quantity of the drug applied. Additionally, the encapsulation of XL-8 in the polymer matrix preserved phototoxic activity of the payload. The nanoparticles displayed enhanced cellular internalization. Flow cytometry and confocal laser-scanning microscopy studies revealed rapid XL-8 loaded nanoparticles distribution throughout the cell and initiation of DNA damage, glutathione depletion, and lipid peroxidation via reactive oxygen species formation. The novel nanoformulated XL-8 simultaneously revealed a significant phototoxicity accompanied with enhanced photostability, in contrast with traditional photosensitizers, and demonstrated a great potential for further in vivo studies.

15.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article En | MEDLINE | ID: mdl-34830136

The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.


Coordination Complexes/pharmacokinetics , Metalloporphyrins/pharmacokinetics , Metals/chemistry , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porphyrins/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Liberation , Female , HeLa Cells , Hemolysis/drug effects , Humans , MCF-7 Cells , Metalloporphyrins/chemistry , Metalloporphyrins/pharmacology , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Tissue Distribution , X-Ray Diffraction
16.
J Genet Eng Biotechnol ; 19(1): 155, 2021 Oct 14.
Article En | MEDLINE | ID: mdl-34648110

BACKGROUND: Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in E. coli due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein. RESULTS: Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in E. coli, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture. CONCLUSIONS: A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content.

17.
Front Mol Biosci ; 8: 671908, 2021.
Article En | MEDLINE | ID: mdl-34026846

Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.

18.
ACS Appl Bio Mater ; 3(12): 8146-8171, 2020 Dec 21.
Article En | MEDLINE | ID: mdl-35019597

The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.

19.
Curr Pharm Des ; 26(1): 103-109, 2020.
Article En | MEDLINE | ID: mdl-31755379

Mitochondrial dysfunction underlies several human chronic pathologies, including cardiovascular disorders, cancers and neurodegenerative diseases. Impaired mitochondrial function associated with oxidative stress can be a result of both nuclear and mitochondrial DNA (mtDNA) mutations. Neurological disorders associated with mtDNA mutations include mitochondrial encephalomyopathy, chronic progressive external ophthalmoplegia, neurogenic weakness, and Leigh syndrome. Moreover, mtDNA mutations were shown to play a role in the development of Parkinson and Alzheimer's diseases. In this review, current knowledge on the distribution and possible roles of mtDNA mutations in the onset and development of various neurodegenerative diseases, with special focus on Parkinson's and Alzheimer's diseases has been discussed.


DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Mutation , Neurodegenerative Diseases/genetics , Humans , Mitochondria/pathology , Oxidative Stress
20.
Free Radic Biol Med ; 143: 522-533, 2019 11 01.
Article En | MEDLINE | ID: mdl-31520768

The mechanisms of binary catalyst therapy (BCT) and photodynamic therapy (PDT) are based on the formation of reactive oxygen species (ROS). This ROS formation results from specific chemical reactions. In BCT, light exposure does not necessarily initiate ROS formation and BCT application is not limited to regions of tissues that are accessible to illumination like photodynamic therapy (PDT). The principle of BCT is electron transition, resulting in the interaction of a transition metal complex (catalyst) and substrate molecule. MnIII- tetraphenylporphyrin chloride (MnClTPP) in combination with an ascorbic acid (AA) has been proposed as an appropriate candidate for cancer treatment regarding the active agents in BCT. The goal of this study was to determine whether MnClTPP in combination with AA would be a promising agent for BCT. The problem of used MnClTPP's, low solubility in water, was solved by MnClTPP loading into PLGA matrix. H2O2 produced during AA decomposition oxidized MnClTPP to high-reactive oxo-MnV species. MnClTPP in presence AA leads to the production of excessive ROS levels in vitro. ROS are mainly substrates of catalase and superoxide dismutase (H2O2 and O2●-). SOD1 and catalase were identified as the key players of the MnClTPP ROS-induced cell defense system. The cytotoxicity of MnClTPP-loaded nanoparticles (NPs) was greatly increased in the presence of specific catalase inhibitor (3-amino-1,2,4-triazole (3AT)) and superoxide dismutase 1 (SOD1) inhibitor (diethyldithiocarbamate (DDC)). Cell death resulted from the combined activation of caspase-dependent (caspase 3/9 system) and independent pathways, namely the AIF translocation to nuclei. Preliminary acute toxicity and in vivo anticancer studies have been revealed the safe and potent anticancer effect of PLGA-entrapped MnClTPP in combination with AA. The findings indicate that MnClTPP-loaded PLGA NPs are promising agents for BCT.


Metalloporphyrins/chemistry , Nanoparticles/administration & dosage , Neoplasms/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Reactive Oxygen Species/metabolism , Animals , Apoptosis , Cell Movement , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/chemistry , Neoplasms/metabolism , Neoplasms/pathology , Oxidation-Reduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
...