Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Struct Biol X ; 9: 100097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38361954

RESUMEN

Aquaporin Z (AqpZ), a bacterial water channel, forms a tetrameric complex and, like many other membrane proteins, activity is regulated by lipids. Various methods have been developed to facilitate structure determination of membrane proteins, such as the use of antibodies. Here, we graft onto AqpZ the ALFA tag (AqpZ-ALFA), an alpha helical epitope, to make use of the high-affinity anti-ALFA nanobody (nB). Native mass spectrometry reveals the AqpZ-ALFA fusion forms a stable, 1:1 complex with nB. Single-particle cryogenic electron microscopy studies reveal the octameric (AqpZ-ALFA)4(nB)4 complex forms a dimeric assembly and the structure was determined to 1.9 Å resolution. Dimerization of the octamer is mediated through stacking of the symmetrically bound nBs. Tube-like density is also observed, revealing a potential cardiolipin binding site. Grafting of the ALFA tag, or other epitope, along with binding and association of nBs to promote larger complexes will have applications in structural studies and protein engineering.

2.
Front Mol Neurosci ; 16: 1205516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435575

RESUMEN

Regulated secretion is conserved in all eukaryotes. In vertebrates granin family proteins function in all key steps of regulated secretion. Phase separation and amyloid-based storage of proteins and small molecules in secretory granules require ion homeostasis to maintain their steady states, and thus need ion conductances in granule membranes. But granular ion channels are still elusive. Here we show that granule exocytosis in neuroendocrine cells delivers to cell surface dominant anion channels, to which chromogranin B (CHGB) is critical. Biochemical fractionation shows that native CHGB distributes nearly equally in soluble and membrane-bound forms, and both reconstitute highly selective anion channels in membrane. Confocal imaging resolves granular membrane components including proton pumps and CHGB in puncta on the cell surface after stimulated exocytosis. High pressure freezing immuno-EM reveals a major fraction of CHGB at granule membranes in rat pancreatic ß-cells. A cryo-EM structure of bCHGB dimer of a nominal 3.5 Å resolution delineates a central pore with end openings, physically sufficient for membrane-spanning and large single channel conductance. Together our data support that CHGB-containing (CHGB+) channels are characteristic of regulated secretion, and function in granule ion homeostasis near the plasma membrane or possibly in other intracellular processes.

3.
Commun Biol ; 5(1): 1054, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192627

RESUMEN

Projected potential of 2.5-4.0 Å cryo-EM structures for structure-based drug design is not well realized yet. Here we show that a 3.1 Å structure of PRMT5 is suitable for selecting computed poses of a chemical inhibitor and its analogs for enhanced potency. PRMT5, an oncogenic target for various cancer types, has many inhibitors manifesting little cooperativity with MTA, a co-factor analog accumulated in MTAP-/- cells. To achieve MTA-synergic inhibition, a pharmacophore from virtual screen leads to a specific inhibitor (11-2 F). Cryo-EM structures of 11-2 F / MTA-bound human PRMT5/MEP50 complex and its apo form resolved at 3.1 and 3.2 Å respectively show that 11-2 F in the catalytic pocket shifts the cofactor-binding pocket away by ~2.0 Å, contributing to positive cooperativity. Computational analysis predicts subtype specificity of 11-2 F among PRMTs. Structural analysis of ligands in the binding pockets is performed to compare poses of 11-2 F and its redesigned analogs and identifies three new analogs predicted to have significantly better potency. One of them, after synthesis, is ~4 fold more efficient in inhibiting PRMT5 catalysis than 11-2 F, with strong MTA-synergy. These data suggest the feasibility of employing near-atomic resolution cryo-EM structures and computational analysis of ligand poses for small molecule therapeutics.


Asunto(s)
Inhibidores Enzimáticos , Proteína-Arginina N-Metiltransferasas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Microscopía por Crioelectrón , Ligandos , Proteína-Arginina N-Metiltransferasas/metabolismo
4.
J Biol Chem ; 294(30): 11579-11596, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31186347

RESUMEN

Human telomerase maintains genome stability by adding telomeric repeats to the ends of linear chromosomes. Although previous studies have revealed profound insights into telomerase functions, the low cellular abundance of functional telomerase and the difficulties in quantifying its activity leave its thermodynamic and kinetic properties only partially characterized. Employing a stable cell line overexpressing both the human telomerase RNA component and the N-terminally biotinylated human telomerase reverse transcriptase and using a newly developed method to count individual extension products, we demonstrate here that human telomerase holoenzymes contain fast- and slow-acting catalytic sites. Surprisingly, both active sites became inactive after two consecutive rounds of catalysis, named single-run catalysis. The fast active sites turned off ∼40-fold quicker than the slow ones and exhibited higher affinities to DNA substrates. In a dimeric enzyme, the two active sites work in tandem, with the faster site functioning before the slower one, and in the monomeric enzyme, the active sites also perform single-run catalysis. Interestingly, inactive enzymes could be reactivated by intracellular telomerase-activating factors (iTAFs) from multiple cell types. We conclude that the single-run catalysis and the iTAF-triggered reactivation serve as an unprecedented control circuit for dynamic regulation of telomerase. They endow native telomerase holoenzymes with the ability to match their total number of active sites to the number of telomeres they extend. We propose that the exquisite kinetic control of telomerase activity may play important roles in both cell division and cell aging.


Asunto(s)
Factores Biológicos/metabolismo , Telomerasa/antagonistas & inhibidores , Catálisis , Dominio Catalítico , Línea Celular , Activación Enzimática , Humanos , Telomerasa/metabolismo
5.
Life Sci Alliance ; 1(5): e201800139, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30456382

RESUMEN

Regulated secretion is an intracellular pathway that is highly conserved from protists to humans. Granin family proteins were proposed to participate in the biogenesis, maturation and release of secretory granules in this pathway. However, the exact molecular mechanisms underlying the intracellular functions of the granin family proteins remain unclear. Here, we show that chromogranin B (CHGB), a secretory granule protein, inserts itself into membrane and forms a chloride-conducting channel. CHGB interacts strongly with phospholipid membranes through two amphipathic α helices. At a high local concentration, CHGB insertion in membrane causes significant bilayer remodeling, producing protein-coated nanoparticles and nanotubules. Fast kinetics and high cooperativity for anion efflux from CHGB vesicles suggest that CHGB tetramerizes to form a functional channel with a single-channel conductance of ∼125 pS (150/150 mM Cl-). The CHGB channel is sensitive to an anion channel blocker and exhibits higher anion selectivity than the other six known families of Cl- channels. Our data suggest that the CHGB subfamily of granin proteins forms a new family of organelle chloride channels.

6.
Mol Cell ; 63(3): 420-32, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27425409

RESUMEN

Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.


Asunto(s)
Cromatina/metabolismo , MicroARNs/biosíntesis , Proteínas Nucleares/metabolismo , Procesamiento Postranscripcional del ARN , Transcripción Genética , Animales , Sitios de Unión , Cromatina/genética , Inmunoprecipitación de Cromatina , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Proteínas de Unión al ADN , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma Humano , Células HeLa , Humanos , MicroARNs/genética , Proteínas Nucleares/genética , Unión Proteica , Interferencia de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Transfección
7.
Eur J Med Chem ; 43(10): 2149-58, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18155810

RESUMEN

Several regioisomeric tetrazolyl indole derivatives with structurally modified alkyl substituents at the tetracyclic indole nitrogen containing N-ethyl amino tetrazole moiety have been synthesized and screened for their ER binding affinity, agonist (estrogenic), antagonist (antiestrogenic) and anti-implantation activities. N-2 regioisomers were found to be moderately antagonists and one compound showed 100% contraceptive efficacy at 10 mg/kg dose. Molecular docking studies carried out in comparison to estradiol and raloxifene showed different binding modes of the two regioisomers to the binding site.


Asunto(s)
Antagonistas de Estrógenos/síntesis química , Antagonistas de Estrógenos/farmacología , Estrógenos/agonistas , Indoles/síntesis química , Indoles/farmacología , Tetrazoles/química , Animales , Anticonceptivos Poscoito/síntesis química , Anticonceptivos Poscoito/química , Anticonceptivos Poscoito/metabolismo , Anticonceptivos Poscoito/farmacología , Diseño de Fármacos , Antagonistas de Estrógenos/química , Antagonistas de Estrógenos/metabolismo , Femenino , Indoles/química , Indoles/metabolismo , Ligandos , Masculino , Modelos Moleculares , Conformación Molecular , Ratas , Receptores de Estrógenos/química , Receptores de Estrógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...