Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ScientificWorldJournal ; 2024: 1119165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38898935

RESUMEN

Ethnomedicinally, more than 2000 plants were found to be used in Nepal. Among them, the red colored rhizome of Angiopteris helferiana and the bark of Saurauia fasciculata have been used widely to treat muscle fatigue, bone pain, fever, postpartum hemorrhage, and thirst by healers in Kaski and Tanahun districts, Nepal. However, scientific evidence towards their traditional uses is lacking till December, 2023. Therefore, we report the phytochemicals, total phenolic content (TPC), total flavonoid content (TFC), total carbohydrate content (TCC), antioxidant and antibacterial activities of A. helferiana and S. fasciculata extracts. Phytochemical analysis indicated that A. helferiana and S. fasciculata extracts were potential sources of chemicals such as phenols, flavonoids, tannins, terpenoids, saponins, and carbohydrates. The TPC, TFC, and TCC of extracts were determined by using an ultraviolet visible spectrophotometer. Among the extracts tested, A. helferiana extracts showed the highest phenolic and carbohydrate contents of 208.33 ± 12.96 mg of gallic acid equivalent/g and 564.16 ± 2.92 mg of D-glucose equivalent/g of dry extract, respectively. Similarly, S. fasciculata revealed the highest flavonoid content of 30.35 ± 0.1 mg quercetin equivalent/g of dry extract. The extract of A. helferiana and S. fasciculata exhibited potent antioxidant activity by scavenging 2,2-diphenyl-1-picrylhydrazyl radicals with an IC50 of 25.9 µg/ml and 31.07 µg/ml, respectively. The antibacterial activity of the A. helferiana and S. fasciculata extract against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was determined using an agar-well diffusion protocol that revealed the potential antibacterial activity of A. helferiana against E. coli. The present study will help validate the traditional uses of A. helferiana rhizomes and S. fasciculata barks as a healing medicine and inspire the researcher towards further research, development, and formulation.


Asunto(s)
Antibacterianos , Antioxidantes , Fitoquímicos , Corteza de la Planta , Extractos Vegetales , Rizoma , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Corteza de la Planta/química , Rizoma/química , Nepal , Flavonoides/análisis , Flavonoides/química , Pruebas de Sensibilidad Microbiana , Fenoles/análisis , Fenoles/química
2.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38054970

RESUMEN

The shoot apical meristem (SAM) of higher plants comprises distinct functional zones. The central zone (CZ) is located at the meristem summit and harbors pluripotent stem cells. Stem cells undergo cell division within the CZ and give rise to descendants, which enter the peripheral zone (PZ) and become recruited into lateral organs. Stem cell daughters that are pushed underneath the CZ form rib meristem (RM). To unravel the mechanism of meristem development, it is essential to know how stem cells adopt distinct cell fates in the SAM. Here, we show that meristem patterning and floral organ primordia formation, besides auxin transport, are regulated by auxin biosynthesis mediated by two closely related genes of the TRYPTOPHAN AMINOTRANSFERASE family. In Arabidopsis SAM, TAA1 and TAR2 played a role in maintaining auxin responses and the identity of PZ cell types. In the absence of auxin biosynthesis and transport, the expression pattern of the marker genes linked to the patterning of the SAM is perturbed. Our results prove that local auxin biosynthesis, in concert with transport, controls the patterning of the SAM into the CZ, PZ and RM.


Asunto(s)
Arabidopsis , Células Madre Pluripotentes , Arabidopsis/genética , Diferenciación Celular , Transporte Biológico , Ácidos Indolacéticos
3.
Plant J ; 114(6): 1267-1284, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36920240

RESUMEN

Iron (Fe) is an essential micronutrient for both plants and animals. Fe-limitation significantly reduces crop yield and adversely impacts on human nutrition. Owing to limited bioavailability of Fe in soil, plants have adapted different strategies that not only regulate Fe-uptake and homeostasis but also bring modifications in root system architecture to enhance survival. Understanding the molecular mechanism underlying the root growth responses will have critical implications for plant breeding. Fe-uptake is regulated by a cascade of basic helix-loop-helix (bHLH) transcription factors (TFs) in plants. In this study, we report that HY5 (Elongated Hypocotyl 5), a member of the basic leucine zipper (bZIP) family of TFs, plays an important role in the Fe-deficiency signaling pathway in Arabidopsis thaliana. The hy5 mutant failed to mount optimum Fe-deficiency responses, and displayed root growth defects under Fe-limitation. Our analysis revealed that the induction of the genes involved in Fe-uptake pathway (FIT-FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR, FRO2-FERRIC REDUCTION OXIDASE 2 and IRT1-IRON-REGULATED TRANSPORTER1) is reduced in the hy5 mutant as compared with the wild-type plants under Fe-deficiency. Moreover, we also found that the expression of coumarin biosynthesis genes is affected in the hy5 mutant under Fe-deficiency. Our results also showed that HY5 negatively regulates BRUTUS (BTS) and POPEYE (PYE). Chromatin immunoprecipitation followed by quantitative polymerase chain reaction revealed direct binding of HY5 to the promoters of BTS, FRO2 and PYE. Altogether, our results showed that HY5 plays an important role in the regulation of Fe-deficiency responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis/fisiología , Hipocótilo/metabolismo , Fitomejoramiento , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
4.
Plant Direct ; 5(3): e00306, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33748654

RESUMEN

Transcriptional control of gene expression is an exquisitely regulated process in both animals and plants. Transcription factors (TFs) and the regulatory networks that drive the expression of TF genes in epidermal and subepidermal cell layers in Arabidopsis are unexplored. Here, we identified 65 TF genes enriched in the epidermal and subepidermal cell layers of the shoot apical meristem (SAM). To determine the cell type specificity in different stages of Arabidopsis development, we made YFP based transcriptional fusion constructs by taking a 3-kb upstream noncoding region above the translation start site. Here, we report that for ~52% (22/42) TF genes, we detected transcription activity. TF genes derived from epidermis show uniform expression in early embryo development; however, in the late globular stage, their transcription activity is suppressed in the inner cell layers. Expression patterns linked to subepidermal cell layer identity were apparent in the postembryonic development. Potential upstream regulators that could modulate the activity of epidermal and subepidermal cell layer-enriched TF genes were identified using enhanced yeast-one-hybrid (eY1H) assay and validated. This study describes the activation of TF genes in epidermal and subepidermal cell layers in embryonic and postembryonic development of Arabidopsis shoot apex.

5.
Plant Physiol ; 184(4): 2091-2106, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33087416

RESUMEN

Understanding how the distinct cell types of the shoot apical meristem (SAM) withstand ultraviolet radiation (UVR) stress can improve cultivation of plants in high-UVR environments. Here, we show that UV-B irradiation selectively kills epidermal and niche cells in the shoot apex. Plants harboring a mutation in DECREASE WAX BIOSYNTHESIS (DEWAX) are tolerant to UV-B. Our data show that DEWAX negatively regulates genes involved in anthocyanin biosynthesis. ELONGATED HYPOCOTYL5 (HY5) binds to the DEWAX promoter elements and represses its expression to promote the anthocyanin biosynthesis. The HY5-DEWAX regulatory network regulates anthocyanin content in Arabidopsis (Arabidopsis thaliana) and influences the survivability of plants under UV-B irradiation stress. Our cell sorting-based study of the epidermal cell layer transcriptome confirms that core UV-B stress signaling pathway genes are conserved and upregulated in response to UV-B irradiation of the SAM. Furthermore, we show that UV-B induces genes involved in shoot development and organ patterning. We propose that the HY5-DEWAX regulatory relationship is conserved; however, changes in the expression levels of these genes can determine anthocyanin content in planta and, hence, fitness under UV-B irradiation stress.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Meristema/genética , Meristema/fisiología , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Rayos Ultravioleta/efectos adversos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucolípidos/genética , Glucolípidos/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Plantas Modificadas Genéticamente
6.
Methods Mol Biol ; 2094: 39-47, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31797289

RESUMEN

In higher plants, the cells that form aboveground tissues and organs are derived from the shoot apical meristem (SAM). SAM is dynamic in nature and divided into central zone (CZ), peripheral zone (PZ), and rib meristem (RM). Stem cells reside in the CZ, and their progenitors differentiate to form lateral organs in PZ and stem tissue in RM. Besides zones, the SAM is also divided into distinct clonal cell layers that show patterned cell division. Here, we describe methods to tag and isolate cell types from both cell layers and zones of SAM in high purity using cell sorter. This method enable plant biologist in rapid isolation of desired cell types from SAM to record their transcriptome, epigenome, proteome, and metabolome. The information generated by this approach will elucidate the mechanism of stem cell self-renewal, differentiation, and organogenesis in SAM.


Asunto(s)
Arabidopsis/metabolismo , Citometría de Flujo/métodos , Meristema/citología , Meristema/metabolismo , Células Madre/citología , Células Madre/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Luminiscentes/metabolismo , Meristema/genética , Microscopía Confocal , Plantas Modificadas Genéticamente , RNA-Seq , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 113(41): E6307-E6315, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671631

RESUMEN

The homeodomain transcription factor WUSCHEL (WUS) promotes stem cell maintenance in inflorescence meristems of Arabidopsis thaliana WUS, which is synthesized in the rib meristem, migrates and accumulates at lower levels in adjacent cells. Maintenance of WUS protein levels and spatial patterning distribution is not well-understood. Here, we show that the last 63-aa stretch of WUS is necessary for maintaining different levels of WUS protein in the rib meristem and adjacent cells. The 63-aa region contains the following transcriptional regulatory domains: the acidic region, the WUS-box, which is conserved in WUS-related HOMEOBOX family members, and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR-like) domain. Our analysis reveals that the opposing functions of WUS-box, which is required for nuclear retention, and EAR-like domain, which participates in nuclear export, are necessary to maintain higher nuclear levels of WUS in cells of the rib meristem and lower nuclear levels in adjacent cells. We also show that the N-terminal DNA binding domain, which is required for both DNA binding and homodimerization, along with the homodimerization sequence located in the central part of the protein, restricts WUS from spreading excessively and show that the homodimerization is critical for WUS function. Our analysis also reveals that a higher level of WUS outside the rib meristem leads to protein destabilization, suggesting a new tier of regulation in WUS protein regulation. Taken together our data show that processes that influence WUS protein levels and spatial distribution are highly coupled to its transcriptional activity.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Multimerización de Proteína , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Expresión Génica Ectópica , Genotipo , Proteínas de Homeodominio/química , Meristema/genética , Meristema/metabolismo , Modelos Biológicos , Mutación , Especificidad de Órganos/genética , Fenotipo , Plantas Modificadas Genéticamente , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Estabilidad Proteica , Transporte de Proteínas
8.
Proc Natl Acad Sci U S A ; 113(41): E6298-E6306, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671653

RESUMEN

Transcriptional mechanisms that underlie the dose-dependent regulation of gene expression in animal development have been studied extensively. However, the mechanisms of dose-dependent transcriptional regulation in plant development have not been understood. In Arabidopsis shoot apical meristems, WUSCHEL (WUS), a stem cell-promoting transcription factor, accumulates at a higher level in the rib meristem and at a lower level in the central zone where it activates its own negative regulator, CLAVATA3 (CLV3). How WUS regulates CLV3 levels has not been understood. Here we show that WUS binds a group of cis-elements, cis- regulatory module, in the CLV3-regulatory region, with different affinities and conformations, consisting of monomers at lower concentration and as dimers at a higher level. By deleting cis elements, manipulating the WUS-binding affinity and the homodimerization threshold of cis elements, and manipulating WUS levels, we show that the same cis elements mediate both the activation and repression of CLV3 at lower and higher WUS levels, respectively. The concentration-dependent transcriptional discrimination provides a mechanistic framework to explain the regulation of CLV3 levels that is critical for stem cell homeostasis.


Asunto(s)
Homeostasis , Células Madre/metabolismo , Transcripción Genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Mutación , Brotes de la Planta , Regiones Promotoras Genéticas , Unión Proteica , Multimerización de Proteína , Secuencias Reguladoras de Ácido Ribonucleico
9.
Plant Signal Behav ; 10(4): e1011937, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25924081

RESUMEN

The shoot apical meristem (SAM) of higher plants harbors stem cells at their tips. In the SAM, stem cell niches maintain the pluripotent nature of these cell types in the central zone (CZ) and allow them to enter in to differentiation pathways either in the peripheral zone (PZ) or rib meristem (RM). Apart from functional zones, SAM is also subdivided in to distinct cell layers termed as; L1 / epidermal, L2 / subepidermal and L3 / corpus cell layer. Thus, SAM is a complex structure made up of multiple cell types having discrete cell identities. In a recent study, we employed the fluorescent activated cell sorting approach to isolate the cell population of functional zones and cell layers and identified the cell population expressed genes (CPEGs). The Gene Ontology (GO) analysis revealed cellular functions of the identified CPEGs. The cell layers of the SAM are involved in pathogen defense, cell differentiation and photosynthesis. We found many genes in SAM CEPGs that responded to hormone treatment. These observations in the future will help researchers working in the area of shoot apex biology to elucidate the gene regulatory network involved in cell and tissue specialization.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Nicho de Células Madre/genética , Células Madre/citología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Modelos Biológicos , Brotes de la Planta/citología , Brotes de la Planta/genética , Células Madre/metabolismo
10.
Development ; 141(13): 2735-44, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24961803

RESUMEN

The shoot apical meristem (SAM) acts as a reservoir for stem cells. The central zone (CZ) harbors stem cells. The stem cell progenitors differentiate in the adjacent peripheral zone and in the rib meristem located just beneath the CZ. The SAM is further divided into distinct clonal layers: the L1 epidermal, L2 sub-epidermal and L3 layers. Collectively, SAMs are complex structures that consist of cells of different clonal origins that are organized into functional domains. By employing fluorescence-activated cell sorting, we have generated gene expression profiles of ten cell populations that belong to different clonal layers as well as domains along the central and peripheral axis. Our work reveals that cells in distinct clonal layers exhibit greater diversity in gene expression and greater transcriptional complexity than clonally related cell types in the central and peripheral axis. Assessment of molecular functions and biological processes reveals that epidermal cells express genes involved in pathogen defense: the L2 layer cells express genes involved in DNA repair pathways and telomere maintenance, and the L3 layers express transcripts involved in ion balance and salt tolerance besides photosynthesis. Strikingly, the stem cell-enriched transcriptome comprises very few hormone-responsive transcripts. In addition to providing insights into the expression profiles of hundreds of transcripts, the data presented here will act as a resource for reverse genetic analysis and will be useful in deciphering molecular pathways involved in cell type specification and their functions.


Asunto(s)
Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Meristema/metabolismo , Epidermis de la Planta/citología , Brotes de la Planta/metabolismo , Transcriptoma/genética , Equilibrio Ácido-Base/genética , Arabidopsis/genética , Mapeo Cromosómico , Reparación del ADN/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Meristema/citología , Meristema/genética , Brotes de la Planta/citología , Brotes de la Planta/genética , Homeostasis del Telómero/genética
11.
Mol Syst Biol ; 9: 654, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23549482

RESUMEN

In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Células Vegetales/metabolismo , Brotes de la Planta/genética , Células Madre/metabolismo , Transcripción Genética , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Diferenciación Celular , Simulación por Computador , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Modelos Genéticos , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Methods Mol Biol ; 959: 235-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23299680

RESUMEN

Shoot apical meristems (SAMs) of higher plants harbor a set of stem-cells and provide cells for the development of all the above-ground biomass of plants. Most of the important pattern formation events such as maintenance of stem-cell identity, specification and differentiation of leaf/flower primordia, and temporal control of the transition from vegetative to reproductive program are determined in SAMs. Genetic analysis has revealed molecular and hormonal pathways involved in stem-cell maintenance, organ differentiation, and flowering time. However, limited information is available as to how different pathways interact with each other to function as a network in specifying different cell types and their function. Deciphering gene networks that underlie cell fate transitions requires new approaches aimed at assaying genome-scale expression patterns of genes at a single cell-type resolution. Here we provide details of experimental methods involved in protoplasting of SAM cells, generating cell type-specific gene expression profiles, and analysis platforms for identifying and inferring gene networks.


Asunto(s)
Meristema/metabolismo , Brotes de la Planta/citología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
13.
Methods Mol Biol ; 876: 217-27, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22576099

RESUMEN

Pattern formation in developmental fields involves precise spatial arrangement of different cell types in a dynamic landscape wherein cells exhibit a variety of behaviors, such as cell division, cell expansion, and cell migration [Reddy (Curr Opin Plant Biol 11:88-931, 2008) and Meyerowitz (Cell 88:299-3082, 2007)]. The information is exchanged between multiple cell layers through cell-cell communication processes to regulate gene expression and cell behaviors in specifying distinct cell types. Therefore, a quantitative and dynamic understanding of the spatial and temporal organization of gene expression and cell behavioral patterns within multilayered and actively growing developmental fields is crucial to model the process of development. The quantification of spatiotemporal dynamics of cell behaviors requires computational tools in image analysis, statistical modeling, pattern recognition, machine learning, and dynamical system identification. Here, we give a brief account of recently developed methods in analyzing both local and global growth patterns in Arabidopsis shoot apical meristems. The computational toolkit can be used to gain new insights into causal relationships among cell growth, cell division, changes in gene expression patterns, and organ development by analyzing various mutants that affect these processes. This may allow us to develop function space models that capture variations in several growth parameters both at local/single-cell level and at global/organ level. In the long run, this may enable clustering of molecular pathways that mediate distinct cell behaviors.


Asunto(s)
Biología Computacional/métodos , Células Madre/citología , Arabidopsis/citología , Meristema/citología , Brotes de la Planta/citología , Nicho de Células Madre
14.
Plant Signal Behav ; 7(5): 592-4, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22516820

RESUMEN

Stem cell maintenance is essential for growth and development of plants and animals. Similar to animal studies, transcription factors play a critical role in plant stem cell maintenance, however the regulatory logic is not well understood. Shoot apical meristems (SAMs) harbor a pool of pluoripotent stem cells and they provide cells for the development of all above-ground organs. Molecular genetic studies spanning more than a decade have revealed cell-cell communication logic underlying stem cell homeostasis. WUSCHEL (WUS), a homeodomain transcription factor expressed in cells of the organizing center specifies stem cells in overlying cells of the central zone (CZ) and also activates a negative regulator-CLAVATA3 (CLV3). CLV3, a small secreted peptide, binds to CLAVATA1 (CLV1) and also possibly to CLV1-related receptors to activate signaling which restricts WUS transcription. Though the CLV-WUS feedback network explains the cell-cell communication logic of stem cell maintenance, how WUS communicates with adjacent cells had remained elusive. In October 15 2011 issue of Genes and Development, we report that WUS protein synthesized in cells of organizing center migrates into adjacent cells via cell-cell movement and activates CLV3 transcription by directly binding to promoter elements.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Comunicación Celular/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Homeodominio/metabolismo , Meristema/citología , Células Madre/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Homeodominio/genética , Homeostasis , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Transcripción Genética
15.
Genes Dev ; 25(19): 2025-30, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21979915

RESUMEN

WUSCHEL (WUS) is a homeodomain transcription factor produced in cells of the niche/organizing center (OC) of shoot apical meristems. WUS specifies stem cell fate and also restricts its own levels by activating a negative regulator, CLAVATA3 (CLV3), in adjacent cells of the central zone (CZ). Here we show that the WUS protein, after being synthesized in cells of the OC, migrates into the CZ, where it activates CLV3 transcription by binding to its promoter elements. Using a computational model, we show that maintenance of the WUS gradient is essential to regulate stem cell number. Migration of a stem cell-inducing transcription factor into adjacent cells to activate a negative regulator, thereby restricting its own accumulation, is a theme that is unique to plant stem cell niches.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Homeostasis , Células Madre/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Brotes de la Planta/metabolismo , Unión Proteica , Transporte de Proteínas
16.
Mol Plant ; 4(5): 922-31, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21965456

RESUMEN

Automated segmentation and tracking of cells in actively developing tissues can provide high-throughput and quantitative spatiotemporal measurements of a range of cell behaviors; cell expansion and cell-division kinetics leading to a better understanding of the underlying dynamics of morphogenesis. Here, we have studied the problem of constructing cell lineages in time-lapse volumetric image stacks obtained using Confocal Laser Scanning Microscopy (CLSM). The novel contribution of the work lies in its ability to segment and track cells in densely packed tissue, the shoot apical meristem (SAM), through the use of a close-loop, adaptive segmentation, and tracking approach. The tracking output acts as an indicator of the quality of segmentation and, in turn, the segmentation can be improved to obtain better tracking results. We construct an optimization function that minimizes the segmentation error, which is, in turn, estimated from the tracking results. This adaptive approach significantly improves both tracking and segmentation when compared to an open loop framework in which segmentation and tracking modules operate separately.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/citología , División Celular , Linaje de la Célula , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Meristema/citología , Meristema/crecimiento & desarrollo , Microscopía Confocal
17.
Curr Biol ; 21(13): 1123-8, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21700457

RESUMEN

The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
PLoS One ; 6(5): e19730, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21603601

RESUMEN

Tissue morphogenesis in plants requires the coordination of cellular behavior across clonally distinct histogenic layers. The underlying signaling mechanisms are presently being unraveled and are known to include the cell surface leucine-rich repeat receptor-like kinase STRUBBELIG in Arabidopsis. To understand better its mode of action an extensive structure-function analysis of STRUBBELIG was performed. The phenotypes of 20 EMS and T-DNA-induced strubbelig alleles were assessed and homology modeling was applied to rationalize their possible effects on STRUBBELIG protein structure. The analysis was complemented by phenotypic, cell biological, and pharmacological investigations of a strubbelig null allele carrying genomic rescue constructs encoding fusions between various mutated STRUBBELIG proteins and GFP. The results indicate that STRUBBELIG accepts quite some sequence variation, reveal the biological importance for the STRUBBELIG N-capping domain, and reinforce the notion that kinase activity is not essential for its function in vivo. Furthermore, individual protein domains of STRUBBELIG cannot be related to specific STRUBBELIG-dependent biological processes suggesting that process specificity is mediated by factors acting together with or downstream of STRUBBELIG. In addition, the evidence indicates that biogenesis of a functional STRUBBELIG receptor is subject to endoplasmic reticulum-mediated quality control, and that an MG132-sensitive process regulates its stability. Finally, STRUBBELIG and the receptor-like kinase gene ERECTA interact synergistically in the control of internode length. The data provide genetic and molecular insight into how STRUBBELIG regulates intercellular communication in tissue morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Morfogénesis , Proteínas Quinasas/química , Proteínas Quinasas/fisiología , Arabidopsis , Comunicación Celular , Inhibidores de Cisteína Proteinasa , Retículo Endoplásmico , Leupeptinas , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Proteínas Tirosina Quinasas Receptoras
19.
Plant Signal Behav ; 6(4): 544-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21406977

RESUMEN

Shoot apical meristem (SAM) stem cell niche is an interconnected network of distinct cell types; the central zone (CZ) harbors a small pool of stem cells, the stem cell progeny are displaced into the adjacent peripheral zone (PZ) and the rib zone (RZ) located beneath the CZ where they differentiate. Relative ratios of cell types remain constant. Genetic studies have shown that the levels or spatial confinement of WUS, a homeodomain transcription factor to few cells in the RZ is critical for regulating stem cell number. However, static analyses of terminal mutant phenotypes have not revealed WUS-mediated mechanisms of stem cell homeostasis. In a recent study we have employed transient manipulation of WUS levels and live imaging to show that it controls several interdependent processes such as regulation of stem cell number, cell division rates of stem cell progenitors and their patterns of differentiation, thus providing robustness to the process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Meristema/citología , Brotes de la Planta/citología , Nicho de Células Madre/citología , Nicho de Células Madre/metabolismo , Células Madre/citología , Células Madre/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Modelos Biológicos
20.
Development ; 137(21): 3581-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876644

RESUMEN

Plant stem cell populations, unlike their animal counterparts, do not use cell migration and oriented cell divisions to maintain their size, and therefore require a precise coordination between self-renewing divisions of stem cells, and rates of cell division and differentiation among stem cell progenitors. Shoot apical meristems (SAMs) of higher plants harbor a set of stem cells within the central zone (CZ) that divide infrequently. Stem cell daughters that are displaced towards the surrounding peripheral zone (PZ) divide at a faster rate and enter into differentiation at specific locations to form leaves or flowers. The relative ratios of cells in the CZ and the PZ are maintained, despite a constant displacement of cells from the CZ into the PZ, and subsequent allocation of cells within the PZ to form organ primordia. The mechanisms that mediate this homeostatic balance are not well understood. A homeodomain transcription factor WUSCHEL, expressed in the rib meristem (RM), located beneath the CZ, has been shown to provide nonautonomous cues for stem cell specification. By employing transient spatial manipulation and live imaging, we show that an elevated level of WUS not only induces expansion of the CZ, but also results in increased cell division rates in cells of the PZ; conversely, decreases in WUS level lead to a smaller CZ and are associated with a reduction in cell division rate. Moreover, low levels of WUS lead to enlarged organ primordia, by elevating the responsiveness of the PZ cells to the plant hormone auxin. This reveals a function of WUS in mediating the balance between differentiating and non-differentiating cells of the PZ. Regulation of stem cell numbers, growth and differentiation patterns by a single transcription factor forms a interconnected and self-correcting feedback loop to provide robustness to stem cell homeostasis in a dynamic cellular environment.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Diferenciación Celular , División Celular , Proteínas de Homeodominio/fisiología , Células Madre/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/genética , División Celular/fisiología , Proliferación Celular , Células Cultivadas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homeostasis/fisiología , Meristema/citología , Meristema/metabolismo , Meristema/fisiología , Mitosis/genética , Mitosis/fisiología , Modelos Biológicos , Plantas Modificadas Genéticamente , Nicho de Células Madre/metabolismo , Nicho de Células Madre/fisiología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA