Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; : 7548-7555, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024027

RESUMEN

Macrocyclic photochromic molecules incorporating multiple photochromic units are known to exhibit cooperative and nonlinear photochromic reactions among distinct photochromic components. While extensive research has concentrated on positive photochromic molecules, this study presents a pioneering attempt in synthesizing macrocyclic photochromic molecules that integrate negative photochromic units. Binaphthyl-bridged phenoxyl imidazolyl radical complex, BN-PIC, exhibits unique negative photochromism in which the thermally stable colored isomer converts to the metastable colorless isomer via a short-lived biradical upon visible-light irradiation. Macrocyclic biphotochromic molecules incorporating two BN-PIC units were synthesized and the effects of ring strain on the photochromic properties including the photoconversion efficiencies and the rates of the thermal reverse reaction were investigated. The photokinetic study of these macrocyclic biphotochromic molecules demonstrated that the structural distortion of the ring caused by the isomerization of one photochromic unit significantly influenced the photoisomerization efficiency and the rate of the thermal reverse reaction of the other photochromic unit.

2.
J Phys Chem Lett ; 15(23): 6190-6193, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38836752

RESUMEN

More than 60 years have passed since the discovery of hexaarylbiimidazole (HABI), which exhibits a characteristic photochromism that produces colored lophyl radicals through a radical dissociation reaction induced by light irradiation and reverts to its original state through a radical recombination reaction in the dark. Lophyl radicals are relatively stable among organic radicals, have low reactivity with oxygen, and have a very slow radical recombination reaction rate. HABI has been used industrially as a photoinitiator to date. However, the guidelines for molecular design to accelerate the thermal reverse reaction of HABI are still unknown and remain a challenge. We found that suppressing the rotation of the phenyl groups attached to the 4- and 5-positions of the imidazole ring of HABI is effective in accelerating the radical recombination reaction. The simple molecular design strategy to accelerate the thermal reverse reaction of HABI is expected to improve the performance of photoinitiators and photoresponsive materials that utilize HABI as a photoresponsive unit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA