Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochimie ; 203: 93-105, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36184002

RESUMEN

The objective of the present review is to provide an insight into modifications of microbial cell walls and membrane constituents by using the aminoacyl-tRNA as amino acid donor. In bacteria, phospholipids are modified by Multiple peptide resistance Factor enzymes and peptidoglycan precursors by so called fem ligases. Although these modifications were thought to be restricted to procaryotes, we discovered enzymes that modify ergosterol (the main component of fungal membrane) with glycine and aspartate. The focus of this review is to present the molecular mechanisms underlying all these processes together with the structure of the enzymes and their substrates. This article also reviews how substrates are recognized and modified and how the products are subsequently exported in various organisms. Finally, the physiological outcome and the discoveries of each family of enzymes is also discussed.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/metabolismo , ARN de Transferencia/metabolismo , Pared Celular/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Peptidoglicano/metabolismo , Aminoacil-ARNt Sintetasas/química
2.
J Biol Chem ; 298(3): 101657, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131263

RESUMEN

A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3ß-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3ß-OH group of ergosterol (Erg), yielding ergosteryl-3ß-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3ß-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3ß-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.


Asunto(s)
Ascomicetos , Ergosterol , Glicina , Aminoácidos , Ascomicetos/genética , Ascomicetos/metabolismo , Ácido Aspártico , Glicina/biosíntesis , Glicina/genética , Glicina/metabolismo , Humanos , ARN de Hongos/genética , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(26): 14948-14957, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541034

RESUMEN

Diverting aminoacyl-transfer RNAs (tRNAs) from protein synthesis is a well-known process used by a wide range of bacteria to aminoacylate membrane constituents. By tRNA-dependently adding amino acids to glycerolipids, bacteria change their cell surface properties, which intensifies antimicrobial drug resistance, pathogenicity, and virulence. No equivalent aminoacylated lipids have been uncovered in any eukaryotic species thus far, suggesting that tRNA-dependent lipid remodeling is a process restricted to prokaryotes. We report here the discovery of ergosteryl-3ß-O-l-aspartate (Erg-Asp), a conjugated sterol that is produced by the tRNA-dependent addition of aspartate to the 3ß-OH group of ergosterol, the major sterol found in fungal membranes. In fact, Erg-Asp exists in the majority of "higher" fungi, including species of biotechnological interest, and, more importantly, in human pathogens like Aspergillus fumigatus We show that a bifunctional enzyme, ergosteryl-3ß-O-l-aspartate synthase (ErdS), is responsible for Erg-Asp synthesis. ErdS corresponds to a unique fusion of an aspartyl-tRNA synthetase-that produces aspartyl-tRNAAsp (Asp-tRNAAsp)-and of a Domain of Unknown Function 2156, which actually transfers aspartate from Asp-tRNAAsp onto ergosterol. We also uncovered that removal of the Asp modifier from Erg-Asp is catalyzed by a second enzyme, ErdH, that is a genuine Erg-Asp hydrolase participating in the turnover of the conjugated sterol in vivo. Phylogenomics highlights that the entire Erg-Asp synthesis/degradation pathway is conserved across "higher" fungi. Given the central roles of sterols and conjugated sterols in fungi, we propose that this tRNA-dependent ergosterol modification and homeostasis system might have broader implications in membrane remodeling, trafficking, antimicrobial resistance, or pathogenicity.


Asunto(s)
Ácido Aspártico/metabolismo , Aspergillus fumigatus/metabolismo , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Esteroles/metabolismo , Aminoacilación , Ácido Aspártico/química , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , ARN de Hongos/química , ARN de Hongos/genética , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Esteroles/química
4.
Enzymes ; 48: 117-147, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33837702

RESUMEN

The aminoacylation reaction is one of most extensively studied cellular processes. The so-called "canonical" reaction is carried out by direct charging of an amino acid (aa) onto its corresponding transfer RNA (tRNA) by the cognate aminoacyl-tRNA synthetase (aaRS), and the canonical usage of the aminoacylated tRNA (aa-tRNA) is to translate a messenger RNA codon in a translating ribosome. However, four out of the 22 genetically-encoded aa are made "noncanonically" through a two-step or indirect route that usually compensate for a missing aaRS. Additionally, from the 22 proteinogenic aa, 13 are noncanonically used, by serving as substrates for the tRNA- or aa-tRNA-dependent synthesis of other cellular components. These nontranslational processes range from lipid aminoacylation, and heme, aa, antibiotic and peptidoglycan synthesis to protein degradation. This chapter focuses on these noncanonical usages of aa-tRNAs and the ways of generating them, and also highlights the strategies that cells have evolved to balance the use of aa-tRNAs between protein synthesis and synthesis of other cellular components.


Asunto(s)
Aminoacil-ARNt Sintetasas , Aminoacilación de ARN de Transferencia , Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
5.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 387-400, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29155070

RESUMEN

Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.


Asunto(s)
Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/fisiología , Citosol/enzimología , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Aminoacil-ARNt Sintetasas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Transporte Biológico , Citocinas/biosíntesis , Células Eucariotas/enzimología , VIH/fisiología , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Membrana/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Proteínas de Neoplasias/fisiología , Neovascularización Fisiológica/fisiología , Fagocitosis/fisiología , Células Procariotas/enzimología , Isoformas de Proteínas/fisiología , Virus del Sarcoma de Rous/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Especificidad de la Especie , Vertebrados/genética , Vertebrados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA