Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(5)2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35269519

RESUMEN

The use of a bone allograft presents a promising approach for healing nonunion fractures. We have previously reported that parathyroid hormone (PTH) therapy induced allograft integration while modulating angiogenesis at the allograft proximity. Here, we hypothesize that PTH-induced vascular modulation and the osteogenic effect of PTH are both dependent on endothelial PTH receptor-1 (PTHR1) signaling. To evaluate our hypothesis, we used multiple transgenic mouse lines, and their wild-type counterparts as a control. In addition to endothelial-specific PTHR1 knock-out mice, we used mice in which PTHR1 was engineered to be constitutively active in collagen-1α+ osteoblasts, to assess the effect of PTH signaling activation exclusively in osteoprogenitors. To characterize resident cell recruitment and osteogenic activity, mice in which the Luciferase reporter gene is expressed under the Osteocalcin promoter (Oc-Luc) were used. Mice were implanted with calvarial allografts and treated with either PTH or PBS. A micro-computed tomography-based structural analysis indicated that the induction of bone formation by PTH, as observed in wild-type animals, was not maintained when PTHR1 was removed from endothelial cells. Furthermore, the induction of PTH signaling exclusively in osteoblasts resulted in significantly less bone formation compared to systemic PTH treatment, and significantly less osteogenic activity was measured by bioluminescence imaging of the Oc-Luc mice. Deletion of the endothelial PTHR1 significantly decreased the PTH-induced formation of narrow blood vessels, formerly demonstrated in wild-type mice. However, the exclusive activation of PTH signaling in osteoblasts was sufficient to re-establish the observed PTH effect. Collectively, our results show that endothelial PTHR1 signaling plays a key role in PTH-induced osteogenesis and has implications in angiogenesis.


Asunto(s)
Células Endoteliales , Hormona Paratiroidea , Animales , Regeneración Ósea , Ratones , Hormona Paratiroidea/farmacología , Receptor de Hormona Paratiroídea Tipo 1/genética , Microtomografía por Rayos X
2.
Stem Cell Res Ther ; 8(1): 51, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28279202

RESUMEN

BACKGROUND: A devastating condition that leads to trauma-related morbidity, multiple rib fractures, remain a serious unmet clinical need. Systemic administration of mesenchymal stem cells (MSCs) has been shown to regenerate various tissues. We hypothesized that parathyroid hormone (PTH) therapy would enhance MSC homing and differentiation, ultimately leading to bone formation that would bridge rib fractures. METHODS: The combination of human MSCs (hMSCs) and a clinically relevant PTH dose was studied using immunosuppressed rats. Segmental defects were created in animals' fifth and sixth ribs. The rats were divided into four groups: a negative control group, in which animals received vehicle alone; the PTH-only group, in which animals received daily subcutaneous injections of 4 µg/kg teriparatide, a pharmaceutical derivative of PTH; the hMSC-only group, in which each animal received five injections of 2 × 106 hMSCs; and the hMSC + PTH group, in which animals received both treatments. Longitudinal in vivo monitoring of bone formation was performed biweekly using micro-computed tomography (µCT), followed by histological analysis. RESULTS: Fluorescently-dyed hMSCs were counted using confocal microscopy imaging of histological samples harvested 8 weeks after surgery. PTH significantly augmented the number of hMSCs that homed to the fracture site. Immunofluorescence of osteogenic markers, osteocalcin and bone sialoprotein, showed that PTH induced cell differentiation in both exogenously administered cells and resident cells. µCT scans revealed a significant increase in bone volume only in the hMSC + PTH group, beginning by the 4th week after surgery. Eight weeks after surgery, 35% of ribs in the hMSC + PTH group had complete bone bridging, whereas there was complete bridging in only 6.25% of ribs (one rib) in the PTH-only group and in none of the ribs in the other groups. Based on the µCT scans, biomechanical analysis using the micro-finite element method demonstrated that the healed ribs were stiffer than intact ribs in torsion, compression, and bending simulations, as expected when examining bone callus composed of woven bone. CONCLUSIONS: Administration of both hMSCs and PTH worked synergistically in rib fracture healing, suggesting this approach may pave the way to treat multiple rib fractures as well as additional fractures in various anatomical sites.


Asunto(s)
Regeneración Ósea , Trasplante de Células Madre Mesenquimatosas , Hormona Paratiroidea/administración & dosificación , Fracturas de las Costillas/terapia , Animales , Modelos Animales de Enfermedad , Curación de Fractura/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/fisiología , Osteocalcina/biosíntesis , Ratas , Fracturas de las Costillas/fisiopatología , Sialoglicoproteínas/biosíntesis , Microtomografía por Rayos X
3.
Bone ; 97: 192-200, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28119180

RESUMEN

Nearly all bone fractures in humans can deteriorate into a non-union fracture, often due to formation of fibrotic tissue. Cranial allogeneic bone grafts present a striking example: although seemingly attractive for craniofacial reconstructions, they often fail due to fibrosis at the host-graft junction, which physically prevents the desired bridging of bone between the host and graft and revitalization of the latter. In the present study we show that intermittent treatment with recombinant parathyroid hormone-analogue (teriparatide) modulates neovascularization feeding in the graft surroundings, consequently reducing fibrosis and scar tissue formation and facilitates osteogenesis. Longitudinal inspection of the vascular tree feeding the allograft has revealed that teriparatide induces formation of small-diameter vessels in the 1st week after surgery; by the 2nd week, abundant formation of small-diameter blood vessels was detected in untreated control animals, but far less in teriparatide-treated mice, although in total, more blood capillaries were detected in the animals that were given teriparatide. By that time point we observed expression of the profibrogenic mediator TGF-ß in untreated animals, but negligible expression in the teriparatide-treated mice. To evaluate the formation of scar tissue, we utilized a magnetization transfer contrast MRI protocol to differentiate osteoid tissue from scar tissue, based on the characterization of collagen fibers. Using this method we found that significantly more bone matrix was formed in animals given teriparatide than in control animals. Altogether, our findings show how teriparatide diminishes scarring, ultimately leading to superior bone graft integration.


Asunto(s)
Aloinjertos/efectos de los fármacos , Trasplante Óseo/efectos adversos , Cicatriz/tratamiento farmacológico , Cicatriz/etiología , Neovascularización Fisiológica/efectos de los fármacos , Cráneo/patología , Teriparatido/uso terapéutico , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/crecimiento & desarrollo , Calcificación Fisiológica/efectos de los fármacos , Femenino , Fibrosis , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Teriparatido/farmacología
4.
Mol Ther ; 24(2): 318-330, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26585691

RESUMEN

Osteoporosis affects more than 200 million people worldwide leading to more than 2 million fractures in the United States alone. Unfortunately, surgical treatment is limited in patients with low bone mass. Parathyroid hormone (PTH) was shown to induce fracture repair in animals by activating mesenchymal stem cells (MSCs). However, it would be less effective in patients with fewer and/or dysfunctional MSCs due to aging and comorbidities. To address this, we evaluated the efficacy of combination i.v. MSC and PTH therapy versus monotherapy and untreated controls, in a rat model of osteoporotic vertebral bone defects. The results demonstrated that combination therapy significantly increased new bone formation versus monotherapies and no treatment by 2 weeks (P < 0.05). Mechanistically, we found that PTH significantly enhanced MSC migration to the lumbar region, where the MSCs differentiated into bone-forming cells. Finally, we used allogeneic porcine MSCs and observed similar findings in a clinically relevant minipig model of vertebral defects. Collectively, these results demonstrate that in addition to its anabolic effects, PTH functions as an adjuvant to i.v. MSC therapy by enhancing migration to heal bone loss. This systemic approach could be attractive for various fragility fractures, especially using allogeneic cells that do not require invasive tissue harvest.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoporosis/terapia , Hormona Paratiroidea/farmacología , Fracturas de la Columna Vertebral/terapia , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Humanos , Células Madre Mesenquimatosas/citología , Osteoporosis/complicaciones , Ratas , Fracturas de la Columna Vertebral/etiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...