Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(7): 6420-6428, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38317611

RESUMEN

Recently, thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) features have been widely applied in developing organic light-emitting diodes with high luminescence efficiencies. The performance of TSCT-TADF molecules depends highly on their molecular structures. Therefore, theoretical investigation plays a significant role in designing novel highly efficient TSCT-TADF molecules. Herein, we theoretically investigate two recently reported TSCT-TADF molecules, 1'-(2,12-di-t-butyl[1,4]benzoxaborinino[2,3,4-kl]phenoxaborinin-7-yl)-10-phenyl-10H-spiro[acridine-9,9'-fluorene] (AC-BO) and 1-(2,12-di-t-butyl[1,4]benzoxaborinino[2,3,4-kl]phenoxaborinin-7-yl)-9',9'-dimethyl-9'H-spiro [fluorene-9,5'-quinolino[3,2,1-de]acridine](QAC-BO). The calculated photophysical properties (e.g. excited state energy levels and luminescence properties) for these two compounds are in good agreement with experimental data. Based on the systematic analysis of structure-performance relationships, we design three novel TSCT-TADF molecules with high molecular rigidity and evident TSCT features, i.e., DQAC-DBO, DQAC-SBO, and DQAC-NBO. They exhibit deep-blue light emissions and fast reverse intersystem crossing rates (KRISCs). Our calculations demonstrate that the nearly coplanar orientation of the donor and acceptor is critical to achieve remarkable KRISCs and fluorescence efficiencies in TSCT-TADF molecules.

2.
J Comput Chem ; 45(6): 321-330, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37861354

RESUMEN

Cyclometalated Pt(II) complexes are popular phosphorescent emitters with color-tunable emissions. To render their practical applications as organic light-emitting diodes emitters, it is required to develop Pt(II) complexes with high radiative decay rate constant and photoluminescence (PL) quantum yield. Here, a general protocol is developed for accurate predictions of emission wavelength, radiative decay rate constant, and PL quantum yield based on the combination of first-principles quantum mechanical method, machine learning, and experimental calibration. A new dataset concerning phosphorescent Pt(II) emitters is constructed, with more than 200 samples collected from the literature. Features containing pertinent electronic properties of the complexes are chosen and ensemble learning models combined with stacking-based approaches exhibit the best performance, where the values of squared correlation coefficients are 0.96, 0.81, and 0.67 for the predictions of emission wavelength, PL quantum yield and radiative decay rate constant, respectively. The accuracy of the protocol is further confirmed using 24 recently reported Pt(II) complexes, which demonstrates its reliability for a broad palette of Pt(II) emitters.

3.
Nano Lett ; 23(20): 9468-9473, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830499

RESUMEN

Crystalline Bi4O4SeCl2 exhibits record-low 0.1 W/mK lattice thermal conductivity (κL), but the underlying transport mechanism is not yet understood. Using a theoretical framework which incorporates first-principles anharmonic lattice dynamics into a unified heat transport theory, we compute both the particle-like and glass-like components of κL in crystalline and pellet Bi4O4SeCl2 forms. The model includes intrinsic three- and four-phonon scattering processes and extrinsic defect and extended defect scattering contributing to the phonon lifetime, as well as temperature-dependent interatomic force constants linked to phonon frequency shifts and anharmonicity. Bi4O4SeCl2 displays strongly anisotropic complex crystal behavior with dominant glass-like transport along the cross-plane direction. The uncovered origin of κL underscores an intrinsic approach for designing extremely low κL materials.

4.
Chem Sci ; 14(18): 4714-4723, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37181766

RESUMEN

Heterogeneous catalysis of adsorbates on metallic surfaces mediated by plasmons has potential high photoelectric conversion efficiency and controllable reaction selectivity. Theoretical modeling of dynamical reaction processes enables in-depth analyses complementing experimental investigations. Especially for plasmon-mediated chemical transformations, light absorption, photoelectric conversion, electron-electron scattering, and electron-phonon coupling occur simultaneously on different timescales, making it very challenging to delineate the complex interplay of different factors. In this work, a trajectory surface hopping non-adiabatic molecular dynamics method is used to investigate the dynamics of plasmon excitation in an Au20-CO system, including hot carrier generation, plasmon energy relaxation, and CO activation induced by electron-vibration coupling. The electronic properties indicate that when Au20-CO is excited, a partial charge transfer takes place from Au20 to CO. On the other hand, dynamical simulations show that hot carriers generated after plasmon excitation transfer back and forth between Au20 and CO. Meanwhile, the C-O stretching mode is activated due to non-adiabatic couplings. The efficiency of plasmon-mediated transformations (∼40%) is obtained based on the ensemble average of these quantities. Our simulations provide important dynamical and atomistic insights into plasmon-mediated chemical transformations from the perspective of non-adiabatic simulations.

5.
J Chem Theory Comput ; 19(5): 1381-1387, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36812059

RESUMEN

All-solid-state lithium-ion batteries have been a promising solution for next-generation energy storage due to their safety and potentially high energy density. In this work, we developed a density-functional tight-binding (DFTB) parameter set for modeling solid-state lithium batteries, focusing on the band alignment at electrolyte/electrode interfaces. Despite DFTB being widely applied in the simulation of large-scale systems, parametrization is usually done for single materials, and less attention is paid to band alignment among multiple materials. Band offsets at the electrolyte/electrode interfaces are key quantities determining the performance. Here, an automated global optimization method based on DFTB confinement potentials of all elements is developed, while the band offsets between electrodes and electrolytes are introduced as constraints during the optimization. The parameter set is applied to model an all-solid-state Li/Li2PO2N/LiCoO2 battery, and its electronic structure shows a good agreement with that from density-functional theory (DFT) calculations.

6.
Small ; 19(18): e2206218, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36670078

RESUMEN

By introducing different contents of Bi adatoms to the surface of monolayer graphene, the carrier concentration and their dynamics have been effectively modulated as probed directly by the time- and angle-resolved photoemission spectroscopy technique. The Bi adatoms are found to assist acoustic phonon scattering events mediated by supercollisions as the disorder effectively relaxes the momentum conservation constraint. A reduced carrier multiplication has been observed, which is related to the shrinking Fermi sea for scattering, as confirmed by time-dependent density functional theory simulation. This work gives insight into hot carrier dynamics in graphene, which is crucial for promoting the application of photoelectric devices.

7.
Adv Sci (Weinh) ; 10(9): e2205934, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683244

RESUMEN

Using a density functional theory-based thermal transport model, which includes the effects of temperature (T)-dependent potential energy surface, lattice thermal expansion, force constant renormalization, and higher-order quartic phonon scattering processes, it is found that the recently synthesized nitride perovskite LaWN3 displays strong anharmonic lattice dynamics manifested into a low lattice thermal conductivity (κL ) and a non-standard κL ∝T-0.491 dependence. At high T, the departure from the standard κL ∝T-1 law originates in the dual particle-wave behavior of the heat carrying phonons, which includes vibrations tied to the N atoms. While the room temperature κL =2.98 W mK-1 arises mainly from the conventional particle-like propagation of phonons, there is also a significant atypical wave-like phonon tunneling effect, leading to a 20% glass-like heat transport contribution. The phonon broadening effect lowers the particle-like contribution but increases the glass-like one. Upon T increase, the glass-like contribution increases and dominates above T = 850 K. Overall, the low κL with a weak T-dependence points to a new utility for LaWN3 in energy technology applications, and motivates synthesis and exploration of nitride perovskites.

8.
J Chem Phys ; 157(21): 214201, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36511539

RESUMEN

Hot carriers generated from the decay of plasmon excitation can be harvested to drive a wide range of physical or chemical processes. However, their generation efficiency is limited by the concomitant phonon-induced relaxation processes by which the energy in excited carriers is transformed into heat. However, simulations of dynamics of nanoscale clusters are challenging due to the computational complexity involved. Here, we adopt our newly developed Trajectory Surface Hopping (TSH) nonadiabatic molecular dynamics algorithm to simulate plasmon relaxation in Au20 clusters, taking the atomistic details into account. The electronic properties are treated within the Linear Response Time-Dependent Tight-binding Density Functional Theory (LR-TDDFTB) framework. The relaxation of plasmon due to coupling to phonon modes in Au20 beyond the Born-Oppenheimer approximation is described by the TSH algorithm. The numerically efficient LR-TDDFTB method allows us to address a dense manifold of excited states to ensure the inclusion of plasmon excitation. Starting from the photoexcited plasmon states in Au20 cluster, we find that the time constant for relaxation from plasmon excited states to the lowest excited states is about 2.7 ps, mainly resulting from a stepwise decay process caused by low-frequency phonons of the Au20 cluster. Furthermore, our simulations show that the lifetime of the phonon-induced plasmon dephasing process is ∼10.4 fs and that such a swift process can be attributed to the strong nonadiabatic effect in small clusters. Our simulations demonstrate a detailed description of the dynamic processes in nanoclusters, including plasmon excitation, hot carrier generation from plasmon excitation dephasing, and the subsequent phonon-induced relaxation process.

9.
Phys Chem Chem Phys ; 24(44): 26948-26961, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36345810

RESUMEN

The certified power conversion efficiency of perovskite solar cells is gradually approaching that of crystalline silicon solar cells. Accordingly, considering the advantages of improved thermal stability and environmental friendliness of lead-free all-inorganic halide double perovskites (LFAIHDPs), they have attracted considerable attention in optoelectronic applications. Herein, we review the recent progress on LFAIHDPs via heterovalent substitution of the lead element, including their geometrical and electronic structures, synthetic processes, and applications in optoelectronic devices. Many experimental and theoretical efforts have been devoted to investigating the thermal stability, defects, and optoelectronic properties of lead-free all-inorganic halide double perovskite materials, which have been presented. Lastly, we discuss the application of machine learning strategies to predict novel perovskite structures with excellent thermal stability and optoelectronic performance.

10.
J Phys Chem Lett ; 13(43): 10132-10139, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36269857

RESUMEN

We have introduced a machine learning workflow that allows for optimizing electronic properties in the density functional tight binding method (DFTB). The workflow allows for the optimization of electronic properties by generating two-center integrals, either by training basis function parameters directly or by training a spline model for the diatomic integrals, which are then used to build the Hamiltonian and the overlap matrices. Using our workflow, we have managed to obtain improved electronic properties, such as charge distributions, dipole moments, and approximated polarizabilities. While both machine learning approaches enabled us to improve on the electronic properties of the molecules as compared with existing DFTB parametrizations, only by training on the basis function parameters we were able to obtain consistent Hamiltonians and overlap matrices in the physically reasonable ranges or to improve on multiple electronic properties simultaneously.


Asunto(s)
Electrónica , Aprendizaje Automático
11.
Adv Sci (Weinh) ; 9(31): e2203400, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36071030

RESUMEN

Carrier multiplication (CM), multiexciton generation by absorbing a single photon, enables disruptive improvements in photovoltaic conversion efficiency. However, energy conservation constrains the threshold energy to at least twice bandgap (2 E g $ E_\text{g}$ ). Here, a below threshold limit CM in monolayer transition metal dichalcogenides (TMDCs) is reported. Surprisingly, CM is observed with excitation energy of only 1.75 E g $E_\text{g}$ due to lattice vibrations. Electron-phonon coupling (EPC) results in significant changes in electronic structures, which favors CM. Indeed, the strongest EPC in monolayer MoS2 leads to the most efficient CM among the studied TMDCs. For practical applications, chalcogen vacancies can further lower the threshold by introducing defect states within bandgap. In particular, for monolayer WS2 , CM occurs with excitation energy as low as 1.51 E g $E_\text{g}$ . The results identify TMDCs as attractive candidate materials for efficient optoelectronic devices with the advantages of high photoconductivity and efficient CM.

12.
J Chem Phys ; 157(8): 084114, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36049993

RESUMEN

Nonadiabatic excited state molecular dynamics underpin many photophysical and photochemical phenomena, such as exciton dynamics, and charge separation and transport. In this work, we present an efficient nonadiabatic molecular dynamics (NAMD) simulation method based on time-dependent density functional tight-binding (TDDFTB) theory. Specifically, the adiabatic electronic structure, an essential NAMD input, is described at the TDDFTB level. The nonadiabatic effects originating from the coupled motions of electrons and nuclei are treated by the trajectory surface hopping algorithm. To improve the computational efficiency, nonadiabatic couplings between excited states within the TDDFTB method are derived and implemented using an analytical approach. Furthermore, the time-dependent nonadiabatic coupling scalars are calculated based on the overlap between molecular orbitals rather than the Slater determinants to speed up the simulations. In addition, the electronic decoherence scheme and a state reassigned unavoided crossings algorithm, which has been implemented in the NEXMD software, are used to improve the accuracy of the simulated dynamics and handle trivial unavoided crossings. Finally, the photoinduced nonadiabatic dynamics of a benzene molecule are simulated to demonstrate our implementation. The results for excited state NAMD simulations of benzene molecule based on TDDFTB method compare well to those obtained with numerically expensive time-dependent density functional theory. The proposed methodology provides an attractive theoretical simulation tool for predicting the photophysical and photochemical properties of complex materials.

13.
Nanoscale ; 14(36): 13053-13058, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36040796

RESUMEN

Thermal transport characteristics of monolayer trigonal prismatic tantalum disulfide (2H-TaS2) are investigated using first-principles calculations combined with the Boltzmann transport equation. Due to a large acoustic-optical phonon gap of 1.85 THz, the four-phonon (4ph) scattering significantly reduces the room-temperature phononic thermal conductivity (κph). With the further inclusion of phonon-electron scattering, κph reduces to 1.78 W mK-1. Nevertheless, the total thermal conductivity (κtotal) of 7.82 W mK-1 is dominated by the electronic thermal conductivity (κe) of 6.04 W mK-1. Due to the electron-phonon coupling, κe differs from the typical estimation based on the Wiedemann-Franz law with a constant Sommerfeld value. This work provides new insights into the physical mechanisms for thermal transport in metallic 2D systems with strong anharmonic and electron-phonon coupling effects. The phonon scattering beyond three-phonon (3ph) scattering and even κe are typically overlooked in computations, and the constant Sommerfeld value is widely used for separating κe and κph from the experimental thermal conductivity. These conclusions have implications for both the computational and experimental measurements of the thermal properties of transition metal dichalcogenides.

14.
J Chem Theory Comput ; 18(9): 5502-5512, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36005397

RESUMEN

Understanding photon-electron conversion on the nanoscale is essential for future innovations in nano-optoelectronics. In this article, based on nonequilibrium Green's function (NEGF) formalism, we develop a quantum-mechanical method for modeling energy conversion in nanoscale optoelectronic devices. The method allows us to study photoinduced charge transport and electroluminescence processes in realistic devices. First, we investigate the electroluminescence properties of a two-level model with two different treatments of inelastic scatterings. We show the regime where self-consistency between electron and photon is important for correct description of the inelastic scatterings. The method is then applied to model single-molecule junctions based on the density-functional tight-binding approach. The predicted emission spectra are found to be in very good agreement with experimental measurements. For nanostructured materials, the method is further applied to study the photoresponse of a two-dimensional graphene/graphite-C3N4 heterojunction photovoltaic device. The simulations demonstrate clearly the impact of atomistic details on the optoelectronic properties of nanodevices. This work provides a practical theoretical framework that can be applied to model and design realistic nanodevices.

15.
ACS Nano ; 16(7): 10647-10656, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35816169

RESUMEN

Excitons in a transition-metal dichalcogenide (TMDC) monolayer can be modulated through strain with spatial and spectral control, which offers opportunities for constructing quantum emitters for applications in on-chip quantum communication and information processing. Strain-localized excitons in TMDC monolayers have so far mainly been observed under cryogenic conditions because of their subwavelength emission area, low quantum yield, and thermal-fluctuation-induced delocalization. Herein, we demonstrate both generation and detection of strain-localized excitons in WS2 monolayer through a simple plasmonic structure design, where WS2 monolayer covers individual Au nanodisks or nanorods. Enhanced emission from the strain-localized excitons of the deformed WS2 monolayer near the plasmonic hotspots is observed at room temperature with a photoluminescence energy redshift up to 200 meV. The emission intensity and peak energy of the strain-localized excitons can be adjusted by the nanodisk size. Furthermore, the excitation and emission polarization of the strain-localized excitons are modulated by anisotropic Au nanorods. Our results provide a promising strategy for constructing nonclassical integrated light sources, high-sensitivity strain sensors, or tunable nanolasers for future dense nanophotonic integrated circuits.

16.
J Phys Chem Lett ; 13(20): 4501-4505, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35575731

RESUMEN

Beryllium polynitride (BeN4) has been recently synthesized under high-pressure conditions [Bykov et al. Phys. Rev. Lett. 2021, 126, 175501]. Its anisotropic lattice structure dependent on the applied pressure motivates exploration of its thermal transport properties with a theoretical framework that combines the Boltzmann transport equation with ab initio calculations. The bonding anisotropy (impacting the phonon and electron group velocities) and bonding anharmonicity (captured through three- and four-phonon scatterings) are reflected in the strong anisotropy of both phononic and electronic components of the thermal conductivity. Moreover, the pressure-driven evolution of the interlayer Be-N bonding, from partially covalent (under high-pressure synthesis conditions) to van der Waals (under ambient pressure), drives a largely interlayer thermal conductivity. These findings highlight an alternative strategy for achieving directional control of the thermal transport in synthetic materials.

17.
Phys Chem Chem Phys ; 24(9): 5748-5754, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35191434

RESUMEN

Deoxyribonucleic acid (DNA) sequencing has found wide applications in medicine including treatment of diseases, diagnosis and genetics studies. Rapid and cost-effective DNA sequencing has been achieved by measuring the transverse electronic conductance as a single-stranded DNA is driven through a nanojunction. With the aim of improving the accuracy and sensitivity of DNA sequencing, we investigate the electron transport properties of DNA nucleobases within gold nanogaps based on first-principles quantum transport simulations. Considering the fact that the DNA bases can rotate within the nanogap during measurements, different nucleobase orientations and their corresponding residence time within the nanogap are explicitly taken into account based on their energetics. This allows us to obtain an average current that can be compared directly to experimental measurements. Our results indicate that bare gold electrodes show low distinguishability among the four DNA nucleobases while the distinguishability can be substantially enhanced with sulfur atom decorated electrodes. We further optimized the size of the nanogap by maximizing the residence time of the desired orientation.


Asunto(s)
Nanoporos , ADN , Electrónica , Oro , Análisis de Secuencia de ADN/métodos
18.
J Phys Chem A ; 126(6): 970-978, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35113552

RESUMEN

The past decade has seen an increasing interest in designing sophisticated density functional approximations (DFAs) by integrating the power of machine learning (ML) techniques. However, application of the ML-based DFAs is often confined to simple model systems. In this work, we construct an ML correction to the widely used Perdew-Burke-Ernzerhof (PBE) functional by establishing a semilocal mapping from the electron density and reduced gradient to the exchange-correlation energy density. The resulting ML-corrected PBE is immediately applicable to any real molecule and yields significantly improved heats of formation while preserving the accuracy for other thermochemical and kinetic properties. This work highlights the prospect of combining the power of data-driven ML methods with physics-inspired derivations for reaching the heaven of chemical accuracy.

19.
Nano Lett ; 21(19): 8205-8212, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34533323

RESUMEN

Site-selective deposition of metal-organic frameworks (MOFs) on metal nanocrystals has remained challenging because of the difficult control of the nucleation and growth of MOFs. Herein we report on a facile wet-chemistry approach for the selective deposition of zeolitic imidazolate framework-8 (ZIF-8) on anisotropic Au nanobipyramids (NBPs) and nanorods. ZIF-8 is selectively deposited at the ends and waist and around the entire surface of the elongated Au nanocrystals. The NBP-based nanostructures with end-deposited ZIF-8 exhibit the best surface-enhanced Raman scattering (SERS) performance, implying that molecules can be concentrated by ZIF-8 at the hot spots. In addition, the SERS signal exhibits good selectivity for small molecules because of the molecular sieving effect of ZIF-8. This study opens up a promising route for constructing plasmonic nanostructures with site selectively deposited ZIF-8, which hold enormous potential for molecular sensing, optical switching, and plasmonic catalysis.

20.
J Phys Chem Lett ; 12(27): 6398-6404, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34232671

RESUMEN

On the basis of real-time simulations, we devise a method to extend the capability of scanning tunneling microscopy (STM) to track the electronic dynamics of molecules on a material's surface with the ultrafast temporal resolution of laser pulses. The intrinsic mechanism of visualization of electronic dynamics by measuring tunneling charge is attributed to the interference between the electronic oscillations stimulated by pump and probe pulses. The charge-transfer rate from molecule to the surrounding environment can be estimated with the decay time of electronic dynamics, which can also be detected by measuring the tunneling charge across the STM junction. Moreover, it is found that the tunneling charge can be varied precisely by changing the carrier-envelope phase (CEP) of the pulses, and this phase-dependence of tunnelling diminishes as the duration of incident laser pulses increases. The proposed scheme provides an alternative means for visualization of electron dynamics of single molecules by measuring tunnelling charges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA