Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Chem Commun (Camb) ; 60(6): 678-681, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38165949

The first atroposelective Chan-Lam coupling for the synthesis of C-N axial enantiomers is reported with good yields and ee. MnO2 additive is crucial for the success of the coupling. The longstanding problem of the lack of enantioselective synthesis to make chiral C-N linked atropisomers is solved.

2.
J Endocrinol ; 254(2): 121-133, 2022 08 01.
Article En | MEDLINE | ID: mdl-35662074

Adiponectin is a cytokine secreted from adipocytes and regulates metabolism. Although serum adiponectin levels show diurnal variations, it is not clear if the effects of adiponectin are time-dependent. Therefore, this study conducted locomotor activity analyses and various metabolic studies using the adiponectin knockout (APN (-/-)) and the APN (+/+) mice to understand whether adiponectin regulates the circadian rhythm of glucose and lipid metabolism. We observed that the adiponectin gene deficiency does not affect the rhythmicity of core circadian clock genes expression in several peripheral tissues. In contrast, the adiponectin gene deficiency alters the circadian rhythms of liver and serum lipid levels and results in the loss of the time dependency of very-low-density lipoprotein-triglyceride secretion from the liver. In addition, the whole-body glucose tolerance of the APN (-/-) mice was normal at CT10 but reduced at CT22, compared to the APN (+/+) mice. The decreased glucose tolerance at CT22 was associated with insulin hyposecretion in vivo. In contrast, the gluconeogenesis activity was higher in the APN (-/-) mice than in the APN (+/+) mice throughout the day. These results indicate that adiponectin regulates part of the circadian rhythm of metabolism in the liver.


Adiponectin , Circadian Clocks , Adiponectin/deficiency , Adiponectin/genetics , Adiponectin/metabolism , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Glucose/metabolism , Lipid Metabolism/genetics , Liver/metabolism , Metabolism, Inborn Errors , Mice
3.
ACS Chem Neurosci ; 13(3): 313-321, 2022 02 02.
Article En | MEDLINE | ID: mdl-35061371

Inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity is a promising approach to treat diseases associated with epigenetic dysregulation, such as neurodevelopmental disorders. However, this concept has not been fully validated because genetic LSD1 deletion causes embryonic lethality and conventional LSD1 inhibitors cause thrombocytopenia via the dissociation of LSD1-cofactor complex. To characterize the therapeutic potential of LSD1 enzyme inhibition, we used TAK-418 and T-448, the LSD1 enzyme activity-specific inhibitors with minimal impact on the LSD1-cofactor complex. TAK-418 and T-448, by inhibiting brain LSD1 enzyme activity, consistently improved social deficits in animal models of neurodevelopmental disorders without causing thrombocytopenia. Moreover, TAK-418 improved memory deficits caused by aging or amyloid precursor protein overexpression. In contrast, TAK-418 did not improve memory deficits caused by miR-137 overexpression. Thus, miR-137 modulation may be involved in memory improvement by LSD1 inhibition. TAK-418 warrants further investigation as a novel therapeutic agent for diseases with epigenetic dysregulation.


Enzyme Inhibitors , Histone Demethylases , Memory Disorders , MicroRNAs/genetics , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Histone Demethylases/metabolism , Memory Disorders/drug therapy , Rodentia
4.
Bioorg Med Chem ; 35: 116056, 2021 04 01.
Article En | MEDLINE | ID: mdl-33607488

A structure-activity relationship (SAR) study towards novel ACC1-selective inhibitors was carried out by modifying the molecular length of the linker in biaryl derivative 1 g, an ACC1/2 dual inhibitor. Ultimately, this leads us to discover novel phenoxybenzyloxy derivative 1i as a potent ACC1-selective inhibitor. Further chemical modification of this scaffold to improve cellular potency as well as physicochemical and pharmacokinetic (PK) properties produced N-2-(pyridin-2-ylethyl)acetamide derivative 1n, which showed highly potent ACC1-selective inhibition as well as sufficient PK profile for further in vivo evaluations. Oral administration of 1n significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at doses of 100 mg/kg. Accordingly, our novel series of potent ACC1-selective inhibitors represents a set of useful orally-available research tools, as well as potential therapeutic agents for cancer and fatty acid-related diseases.


Acetamides/pharmacology , Acetyl-CoA Carboxylase/antagonists & inhibitors , Benzyl Compounds/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Acetyl-CoA Carboxylase/metabolism , Animals , Benzyl Compounds/chemical synthesis , Benzyl Compounds/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Structure-Activity Relationship
5.
J Med Chem ; 63(3): 1084-1104, 2020 02 13.
Article En | MEDLINE | ID: mdl-31895562

In our pursuit of developing a novel, potent, and selective cell division cycle 7 (Cdc7) inhibitor, we optimized the previously reported thieno[3,2-d]pyrimidinone analogue I showing time-dependent Cdc7 kinase inhibition and slow dissociation kinetics. These medicinal chemistry efforts led to the identification of compound 3d, which exhibited potent cellular activity, excellent kinase selectivity, and antitumor efficacy in a COLO205 xenograft mouse model. However, the issue of formaldehyde adduct formation emerged during a detailed study of 3d, which was deemed an obstacle to further development. A structure-based approach to circumvent the adduct formation culminated in the discovery of compound 11b (TAK-931) possessing a quinuclidine moiety as a preclinical candidate. In this paper, the design, synthesis, and biological evaluation of this series of compounds will be presented.


Antineoplastic Agents/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazolones/therapeutic use , Pyrimidines/therapeutic use , Pyrimidinones/therapeutic use , Quinuclidines/therapeutic use , Thiophenes/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Drug Design , Drug Discovery , Formaldehyde/chemistry , Humans , Mice , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyrazolones/pharmacology , Pyrimidines/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/metabolism , Quinuclidines/chemical synthesis , Quinuclidines/metabolism , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/metabolism , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem Lett ; 29(23): 126749, 2019 12 01.
Article En | MEDLINE | ID: mdl-31672259

In our effort to explore the potential of ACC1-selective inhibitor as in vivo probe molecule, a series of 1,3-benzoxazole derivatives was synthesized. Previously, we reported a series of novel bicyclic and monocyclic ACC1-selective inhibitors. Among them, compound 1a exhibited highly potent cellular activity (acetate uptake IC50 = 0.76 nM) as well as promising in vivo PD efficacy. However, compound 1a caused severe body weight reduction in repeated dose administration in the mouse model. Since 1a showed potent inhibitory activity against mouse ACC1 as well as strong inhibition of mouse ACC2, we further examined a series of 1a analogues in order to reduce undesirable body weight change. The replacement of acetamide moiety with ureido moiety dramatically improved selectivity of mouse ACC1 against ACC2. In addition, analogue 1b displayed favorable bioavailability in mouse cassette dosing PK study, hence in vivo PD studies were also carried out. Oral administration of 1b significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at doses of more than 30 mg/kg. Furthermore, compound 1b showed significant antitumor efficacy in 786-O xenograft mice at an oral dose of 30 mg/kg (T/C = 0.5%). Accordingly, our novel potent ACC1-selective inhibitor represents a set of useful orally-available research tools, as well as potential therapeutic agents particularly in terms of new cancer therapies.


Acetyl-CoA Carboxylase/antagonists & inhibitors , Animals , Humans , Mice
7.
Sci Adv ; 5(5): eaav3660, 2019 05.
Article En | MEDLINE | ID: mdl-31131319

Replication stress (RS) is a cancer hallmark; chemotherapeutic drugs targeting RS are widely used as treatments for various cancers. To develop next-generation RS-inducing anticancer drugs, cell division cycle 7 (CDC7) has recently attracted attention as a target. We have developed an oral CDC7-selective inhibitor, TAK-931, as a candidate clinical anticancer drug. TAK-931 induced S phase delay and RS. TAK-931-induced RS caused mitotic aberrations through centrosome dysregulation and chromosome missegregation, resulting in irreversible antiproliferative effects in cancer cells. TAK-931 exhibited significant antiproliferative activity in preclinical animal models. Furthermore, in indication-seeking studies using large-scale cell panel data, TAK-931 exhibited higher antiproliferative activities in RAS-mutant versus RAS-wild-type cells; this finding was confirmed in pancreatic patient-derived xenografts. Comparison analysis of cell panel data also demonstrated a unique efficacy spectrum for TAK-931 compared with currently used chemotherapeutic drugs. Our findings help to elucidate the molecular mechanisms for TAK-931 and identify potential target indications.


Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazolones/pharmacology , Pyrimidines/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation , Cell Separation , Cell Survival , Centrosome/drug effects , Chromosome Aberrations/drug effects , Computational Biology , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Female , HeLa Cells , Humans , Inhibitory Concentration 50 , Kaplan-Meier Estimate , Mice , Mice, Inbred BALB C , Mitosis/drug effects , Models, Animal , Mutation , Neoplasm Transplantation , Pancreatic Neoplasms/drug therapy , Protein Binding , Protein Kinase Inhibitors/pharmacology , Proteomics , Treatment Outcome , Xenograft Model Antitumor Assays
8.
Bioorg Med Chem ; 27(12): 2521-2530, 2019 06 15.
Article En | MEDLINE | ID: mdl-30879862

We initiated our structure-activity relationship (SAR) studies for novel ACC1 inhibitors from 1a as a lead compound. Our initial SAR studies of 1H-Pyrrolo[3,2-b]pyridine-3-carboxamide scaffold revealed the participation of HBD and HBA for ACC1 inhibitory potency and identified 1-methyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1c as a potent ACC1 inhibitor. Although compound 1c had physicochemical and pharmacokinetic (PK) issues, we investigated the 1H-pyrrolo[3,2-b]pyridine core scaffold to address these issues. Accordingly, this led us to discover a novel 1-isopropyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1k as a promising ACC1 inhibitor, which showed potent ACC1 inhibition as well as sufficient cellular potency. Since compound 1k displayed favorable bioavailability in mouse cassette dosing PK study, we conducted in vivo Pharmacodynamics (PD) studies of this compound. Oral administration of 1k significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at a dose of 100 mg/kg. Accordingly, our novel series of potent ACC1 inhibitors represent useful orally-available research tools, as well as potential therapeutic agents for cancer and fatty acid related diseases.


Acetyl-CoA Carboxylase/antagonists & inhibitors , Amides/chemistry , Drug Design , Enzyme Inhibitors/chemical synthesis , Pyridines/chemistry , Acetyl-CoA Carboxylase/metabolism , Administration, Oral , Amides/metabolism , Amides/pharmacokinetics , Amides/therapeutic use , Animals , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , HCT116 Cells , Humans , Male , Malonyl Coenzyme A/metabolism , Mice , Mice, Inbred ICR , Neoplasms/drug therapy , Structure-Activity Relationship , Transplantation, Heterologous
9.
EMBO Mol Med ; 10(6)2018 06.
Article En | MEDLINE | ID: mdl-29769258

The modulation of pre-mRNA splicing is proposed as an attractive anti-neoplastic strategy, especially for the cancers that exhibit aberrant pre-mRNA splicing. Here, we discovered that T-025 functions as an orally available and potent inhibitor of Cdc2-like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T-025 reduced CLK-dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive-associated biomarker of T-025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T-025 treatment. MYC activation, which altered pre-mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti-tumor efficacy of T-025 in an allograft model of spontaneous, MYC-driven breast cancer, at well-tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC-driven cancer patients.


Diamines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Quinolines/pharmacology , RNA Splicing/drug effects , Animals , Cell Line, Tumor , Diamines/chemistry , Genes, myc , Humans , Mice , Mice, Transgenic , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/physiology , Pyrimidines/chemistry , Quinolines/chemistry , RNA Splicing/genetics
10.
J Med Chem ; 61(3): 1098-1117, 2018 02 08.
Article En | MEDLINE | ID: mdl-29232514

We initiated our structure-activity relationship (SAR) studies for selective ACC1 inhibitors from 1a as a lead compound. SAR studies of bicyclic scaffolds revealed many potent and selective ACC1 inhibitors represented by 1f; however most of them had physicochemical issues, particularly low aqueous solubility and potent CYP inhibition. To address these two issues and improve the druglikeness of this chemical series, we converted the bicyclic scaffold into a monocyclic framework. Ultimately, this lead us to discover a novel monocyclic derivative 1q as a selective ACC1 inhibitor, which showed highly potent and selective ACC1 inhibition as well as acceptable solubility and CYP inhibition profiles. Since compound 1q displayed favorable bioavailability in mouse cassette dosing testing, we conducted in vivo PD studies of this compound. Oral administration of 1q significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at doses of more than 30 mg/kg. Accordingly, our novel series of selective ACC1 inhibitors represents a set of useful orally available research tools, as well as potential therapeutic agents for cancer and fatty acid related diseases.


Acetyl-CoA Carboxylase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Animals , Chemical Phenomena , HCT116 Cells , Humans , Inhibitory Concentration 50 , Mice , Mice, Nude , Structure-Activity Relationship
11.
Bioorg Med Chem ; 25(14): 3768-3779, 2017 07 15.
Article En | MEDLINE | ID: mdl-28571972

A lead compound A was identified previously as an stearoyl coenzyme A desaturase (SCD) inhibitor during research on potential treatments for obesity. This compound showed high SCD1 binding affinity, but a poor pharmacokinetic (PK) profile and limited chemical accessibility, making it suboptimal for use in anticancer research. To identify potent SCD1 inhibitors with more promising PK profiles, we newly designed a series of 'non-spiro' 4, 4-disubstituted piperidine derivatives based on molecular modeling studies. As a result, we discovered compound 1a, which retained moderate SCD1 binding affinity. Optimization around 1a was accelerated by analyzing Hansch-Fujita and Hammett constants to obtain 4-phenyl-4-(trifluoromethyl)piperidine derivative 1n. Fine-tuning of the azole moiety of 1n led to compound 1o (T-3764518), which retained nanomolar affinity and exhibited an excellent PK profile. Reflecting the good potency and PK profile, orally administrated compound 1o showed significant pharmacodynamic (PD) marker reduction (at 0.3mg/kg, bid) in HCT116 mouse xenograft model and tumor growth suppression (at 1mg/kg, bid) in 786-O mouse xenograft model. In conclusion, we identified a new series of SCD1 inhibitors, represented by compound 1o, which represents a promising new chemical tool suitable for the study of SCD1 biology as well as the potential development of novel anticancer therapies.


Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemical synthesis , Oxadiazoles/chemical synthesis , Pyridazines/chemical synthesis , Stearoyl-CoA Desaturase/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , HCT116 Cells , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Oxadiazoles/pharmacokinetics , Oxadiazoles/therapeutic use , Oxadiazoles/toxicity , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacology , Protein Binding , Pyridazines/pharmacokinetics , Pyridazines/therapeutic use , Pyridazines/toxicity , Spiro Compounds/chemistry , Stearoyl-CoA Desaturase/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
12.
Eur J Pharmacol ; 807: 21-31, 2017 Jul 15.
Article En | MEDLINE | ID: mdl-28442322

Most cancer cells are characterized by elevated lipid biosynthesis. The rapid proliferation of cancer cells requires de novo synthesis of fatty acids. Stearoyl-CoA desaturase-1 (SCD1), a key enzyme for lipogenesis, is overexpressed in various types of cancer and plays an important role in cancer cell proliferation. Therefore, it has been studied as a candidate target for cancer therapy. In this study, we demonstrate the pharmacological properties of T-3764518, a novel and orally available small molecule inhibitor of SCD1. T-3764518 inhibited stearoyl-CoA desaturase-catalyzed conversion of stearoyl-CoA to oleoyl-CoA in colorectal cancer HCT-116 cells and their growth. Further, it slowed tumor growth in an HCT-116 and a mesothelioma MSTO-211H mouse xenograft model. Comprehensive lipidomic analyses revealed that T-3764518 increases the membrane ratio of saturated: unsaturated fatty acids in various lipid species such as phosphatidylcholines and diacylglycerols in both cultured cells and HCT-116 xenografts. Treatment-associated lipidomic changes were followed by activated endoplasmic reticulum (ER) stress responses such as increased immunoglobulin heavy chain-binding protein expression in HCT-116 cells. These T-3764518-induced changes led to an increase in cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptosis. Additionally, bovine serum albumin conjugated with oleic acid, an SCD1 product, prevented cell growth inhibition and ER stress responses by T-3764518, indicating that these outcomes were not attributable to off-target effects. These results indicate that T-3764518 is a promising new anticancer drug candidate.


Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Enzyme Inhibitors/pharmacology , Oxadiazoles/pharmacology , Oxadiazoles/pharmacokinetics , Pyridazines/pharmacology , Pyridazines/pharmacokinetics , Stearoyl-CoA Desaturase/antagonists & inhibitors , Xenograft Model Antitumor Assays , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Endoplasmic Reticulum Stress/drug effects , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Fatty Acids/metabolism , HCT116 Cells , Humans , Mice , Oxadiazoles/administration & dosage , Oxadiazoles/metabolism , Pyridazines/administration & dosage , Pyridazines/metabolism , Stearoyl-CoA Desaturase/metabolism
13.
Biochem Biophys Res Commun ; 488(4): 648-654, 2017 07 08.
Article En | MEDLINE | ID: mdl-28087278

Protein translation is highly activated in cancer tissues through oncogenic mutations and amplifications, and this can support survival and aberrant proliferation. Therefore, blocking translation could be a promising way to block cancer progression. The process of charging a cognate amino acid to tRNA, a crucial step in protein synthesis, is mediated by tRNA synthetases such as prolyl tRNA synthetase (PRS). Interestingly, unlike pan-translation inhibitors, we demonstrated that a novel small molecule PRS inhibitor (T-3861174) induced cell death in several tumor cell lines including SK-MEL-2 without complete suppression of translation. Additionally, our findings indicated that T-3861174-induced cell death was caused by activation of the GCN2-ATF4 pathway. Furthermore, the PRS inhibitor exhibited significant anti-tumor activity in several xenograft models without severe body weight losses. These results indicate that PRS is a druggable target, and suggest that T-3861174 is a potential therapeutic agent for cancer therapy.


Activating Transcription Factor 4/metabolism , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Picolinic Acids/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyrrolidinones/pharmacology , Amino Acyl-tRNA Synthetases/metabolism , Animals , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Picolinic Acids/chemistry , Pyrrolidinones/chemistry , Structure-Activity Relationship
14.
Clin Exp Pharmacol Physiol ; 44(4): 463-469, 2017 Apr.
Article En | MEDLINE | ID: mdl-28008646

Early brain injury/ischaemia (EBI) is a serious complication early after subarachnoid haemorrhage (SAH) that contributes to development of delayed cerebral ischaemia (DCI). This study aimed to determine the role of inotropic cardiac support using milrinone (MIL) on restoring acute cerebral hypoperfusion attributable to EBI and improving outcomes after experimental SAH. Forty-three male C57BL/6 mice were assigned to either sham surgery (SAH-sham), SAH induced by endovascular perforation plus postconditioning with 2% isoflurane (Control), or SAH plus isoflurane combined with MIL with and without hypoxia-inducible factor inhibitor (HIF-I) pretreatment. Cardiac output (CO) during intravenous MIL infusion (0.25-0.75 µg/kg/min) between 1.5 and 2.5 hours after SAH induction was monitored with Doppler echocardiography. Magnetic resonance imaging (MRI)-continuous arterial spin labelling was used for quantitative cerebral blood flow (CBF) measurements. Neurobehavioral function was assessed daily by neurological score and open field test. DCI was analyzed 3 days later by determining infarction on MRI. Mild reduction of cardiac output (CO) and global cerebral blood flow (CBF) depression were notable early after SAH. MIL increased CO in a dose-dependent manner (P<.001), which was accompanied by improved hypoperfusion, incidence of DCI and functional recovery than Control (P<.05). The neuroprotective effects afforded by MIL or Control were attenuated by hypoxia-inducible factor (HIF) inhibition (P<.05). These results suggest that MIL improves acute hypoperfusion by its inotropic effect, leading to neurobehavioral improvement in mice after severe SAH, in which HIF may be acting as a critical mediator.


Brain Injuries/complications , Milrinone/administration & dosage , Milrinone/pharmacology , Recovery of Function/drug effects , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/physiopathology , Administration, Intravenous , Animals , Brain Ischemia/complications , Cerebrovascular Circulation/drug effects , Disease Models, Animal , Hemodynamics/drug effects , Male , Mice , Mice, Inbred C57BL , Milrinone/therapeutic use , Subarachnoid Hemorrhage/complications
15.
Otol Neurotol ; 38(1): 110-113, 2017 01.
Article En | MEDLINE | ID: mdl-27779561

OBJECTIVE: To clarify the direction and characteristics of nystagmus at the onset of a vertiginous attack in Ménière's disease. PATIENTS: Two patients with Ménière's disease, whose nystagmus at the onset of a vertiginous attack was recorded using electronystagmography. INTERVENTIONS: Diagnostic. MAIN OUTCOME MEASURES: Electronystagmographic recordings of nystagmus. RESULTS: In both patients, nystagmus was directed toward the affected side over the entire course of the vertiginous attack. One patient experienced a severe sensation of vertigo and exhibited strong nystagmus from the onset of the attack. The other patient reported a mild sensation of vertigo, which was accompanied by intermittent nystagmus. CONCLUSIONS: Vertiginous attacks in Ménière's disease are accompanied by irritative nystagmus. The intensity and characteristics (e.g., continuous or intermittent expression) of the nystagmus may be associated with pathophysiological severity.


Meniere Disease/complications , Nystagmus, Pathologic/physiopathology , Vertigo/physiopathology , Adult , Electronystagmography , Female , Humans , Male , Middle Aged , Nystagmus, Pathologic/etiology , Vertigo/etiology
16.
Life Sci ; 153: 35-40, 2016 May 15.
Article En | MEDLINE | ID: mdl-27094790

AIMS: Neurocardiac dysfunction is a life-threatening systemic consequence of subarachnoid hemorrhage (SAH) that contributes to triggering delayed cerebral ischemia (DCI). This study aimed to determine the impact of dobutamine cardiac support during isoflurane postconditioning on post-SAH DCI. MAIN METHODS: Male C57BL/6 mice were subjected to SAH, SAH plus isoflurane postconditioning, or SAH plus isoflurane postconditioning with dobutamine. Severity of SAH was graded from 1 to 4 (mild, 1-2; severe, 3-4) based on T2*-weighted magnetic resonance imaging (MRI). Cardiac output (CO) measured by transthoracic pulsed wave Doppler-echocardiography was titrated at a supra-normal level with intravenous dobutamine infusion. Neurological function was examined daily by neurological score and Rotarod tests. DCI was analyzed 3days later by determining new infarction on diffusion-weighted MRI. In a separate experiment, mice were pretreated with hypoxia-inducible factor (HIF) inhibitor 2-methoxyestradiol (2ME2). KEY FINDINGS: Clinically relevant CO depression was notable in severe SAH grade mice, in which dobutamine CO management combined with isoflurane postconditioning showed earlier and improved functional recovery than postconditioning with single isoflurane inhalation. Incidence of infarction and volumes on day 3 reduced significantly in this subgroup. All of the effects during preconditioning were attenuated by 2ME2 pretreatment. SIGNIFICANCE: Isoflurane postconditioning under dobutamine cardiac support improves recovery from SAH-induced early brain injury, leading to reduced DCI resultant from severe experimental SAH. These results indicate the importance of neuro-cardiac protection, in which HIF may be acting as a critical mediator, as a promising therapeutic approach to SAH.


Brain Injuries/rehabilitation , Heart/drug effects , Isoflurane/pharmacology , Subarachnoid Hemorrhage/complications , Animals , Brain Injuries/etiology , Dobutamine/administration & dosage , Hemodynamics , Male , Mice , Mice, Inbred C57BL
17.
J Acoust Soc Am ; 138(2): 687-93, 2015 Aug.
Article En | MEDLINE | ID: mdl-26328686

Odontoceti emit broadband high-frequency clicks on echolocation for orientation or prey detection. In the Amazon Basin, two odontoceti species, boto (Amazon River dolphin, Inia geoffrensis) and tucuxi (Sotalia fluviatilis), live sympatrically. The acoustic characteristics of the echolocation clicks of free-ranging botos and tucuxis were measured with a hydrophone array consisting of a full-band and an acoustic event recorder (A-tag). The clicks of the two species were short-duration broadband signals. The apparent source level was 201 dB 1 µPa peak-to-peak at 1 m in the botos and 181 dB 1 µPa peak-to-peak at 1 m in the tucuxis, and the centroid frequency was 82.3 kHz in the botos and 93.1 kHz in the tucuxis. The high apparent source level and low centroid frequency are possibly due to the difference in body size or sound production organs, especially the nasal structure, the sound source of clicks in odontoceti.


Dolphins/physiology , Echolocation , Animals , Body Size , Brazil , Dolphins/anatomy & histology , Female , Head/anatomy & histology , Male , Rivers , Sound Spectrography , Species Specificity
18.
Bioorg Med Chem ; 23(15): 4777-4791, 2015 Aug 01.
Article En | MEDLINE | ID: mdl-26094943

As we previously reported, N-methylpyrrolo[3,2-c]pyridine derivatives 1 (TAK-441) was discovered as a clinical candidate of hedgehog (Hh) signaling inhibitor by modification of the upper part. We next focused on modification of the lower part including core skeletons to discover new Hh signaling inhibitors with novel core rings. Efforts to find novel chemotypes by using X-ray single crystal structure analysis led to some potent Hh signaling inhibitors (2c, 2d, 2e, 2f) with novel core ring systems, which had benzamide moiety at the 5-position as a key component for potent activity. The suppression of Gli1 expression with these new Hh signaling inhibitors were weaker than that of compound 1 (TAK-441) because of low pharmacokinetic property. We recognized again TAK-441 is a good compound as clinical candidate with good structural and pharmacokinetic advantages.


Hedgehog Proteins/antagonists & inhibitors , Pyridines/chemistry , Signal Transduction , Animals , Crystallography, X-Ray , Drug Evaluation, Preclinical , Genes, Reporter , Half-Life , Hedgehog Proteins/metabolism , Humans , Mice , Molecular Conformation , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Signal Transduction/drug effects , Structure-Activity Relationship
19.
J Med Food ; 17(3): 295-301, 2014 Mar.
Article En | MEDLINE | ID: mdl-24433071

The present study aimed to clarify the effects of Agaricus brasiliensis KA21 (i.e., Agaricus blazei) mushroom on circulatory function. Spontaneously hypertensive rats (SHRs) were fed 10% A. blazei-containing pellets (agaricus group) or normal pellets (control group) for 5 weeks from 6 to 11 weeks of age. For Experiment 1, tail blood pressure and heart rate were measured in the conscious SHRs. For Experiment 2, echocardiographic and blood biochemical measurements were performed in the anesthetized SHRs. In Experiment 1, blood pressure and heart rate were significantly lower in the agaricus group compared with the control group throughout the observation period. In Experiment 2, the agaricus group also showed a significant decrease in cardiac output accompanied by a decrease in heart rate and an increase in early and late ventricular filling velocity (E/A ratio). Moreover, levels of escape enzymes such as creatine kinase (CK), CK-BB, CK-MB, asparate aminotransferase, lactate dehydrogenase, and aldolase were significantly lower than in the control group. We concluded that the ingestion of feed containing A. brasiliensis KA21 can improve hypertensive cardiovascular hemodynamics by decreasing the working load of the heart, presumably by lowering the sympathetic nervous tone in SHRs.


Agaricus/metabolism , Antihypertensive Agents/metabolism , Blood Circulation , Hypertension/diet therapy , Animals , Heart Rate , Humans , Hypertension/physiopathology , Rats , Rats, Inbred SHR
20.
J Acoust Soc Am ; 134(3): 2418-26, 2013 Sep.
Article En | MEDLINE | ID: mdl-23968039

Abundance estimation of marine mammals requires matching of detection of an animal or a group of animal by two independent means. A multimodal detection model using visual and acoustic cues (surfacing and phonation) that enables abundance estimation of dolphins is proposed. The method does not require a specific time window to match the cues of both means for applying mark-recapture method. The proposed model was evaluated using data obtained in field observations of Ganges River dolphins and Irrawaddy dolphins, as examples of dispersed and condensed distributions of animals, respectively. The acoustic detection probability was approximately 80%, 20% higher than that of visual detection for both species, regardless of the distribution of the animals in present study sites. The abundance estimates of Ganges River dolphins and Irrawaddy dolphins fairly agreed with the numbers reported in previous monitoring studies. The single animal detection probability was smaller than that of larger cluster size, as predicted by the model and confirmed by field data. However, dense groups of Irrawaddy dolphins showed difference in cluster sizes observed by visual and acoustic methods. Lower detection probability of single clusters of this species seemed to be caused by the clumped distribution of this species.


Acoustics , Dolphins/physiology , Environmental Monitoring/methods , Marine Biology/methods , Vocalization, Animal , Algorithms , Animals , Cues , Dolphins/classification , Dolphins/psychology , Humans , Models, Theoretical , Oceans and Seas , Phonation , Population Density , Reproducibility of Results , Signal Processing, Computer-Assisted , Sound Spectrography , Species Specificity , Visual Perception , Vocalization, Animal/classification
...