Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
J Orthop Sci ; 29(1): 341-348, 2024 Jan.
Article En | MEDLINE | ID: mdl-36739193

BACKGROUND: Biofilm-related infections are serious problems in the Orthopedics field, and Staphylococcus aureus are the most popular causative agents of bacterial infections associated with arthroplasty. Several studies demonstrated a synergistic effect of the electric intervention (EI) and the antibiotic administration in killing bacteria in biofilm; however, a constant, long-time EI was needed. In the present study, the effective removal of biofilm formed with S. aureus on a titanium ring by multiple times of one minute-EI was observed and described. METHODS: A methicillin-sensitive S. aureus clinical isolate was used to form biofilm on a titanium ring. After applying a series of EI with various combinations of the frequencies and timings, the amount and principal components of biofilms were assessed with crystal violet staining, live bacterial cell count, and fluorescence staining with confocal laser scanning microscopy. RESULTS: More than 60% biofilm removal was observed in the 2-time EI applied at 24 (1) and 72 (3) h (days) post bacterial exposure (PBE) and in the 3-time EI at 0 (0), 24 (1), and 72 (3) h (days) PBE, or at 24 (1), 48 (2), and 72 (3) h (days) PBE. The live bacterial cell numbers, the proportion of live and dead cells, and the amount of extracellular polysaccharide substances (EPS) of biofilm were similar with or without EI. It was assumed that an excess amount of the biofilm removal shown in the several EI was not attributed to the effect of the electrolysis. CONCLUSIONS: The effective removal of biofilm was observed when multiple times 1 min EI was applied without any changes in the proportion of live and dead bacteria or the amount of EPS. The mechanisms to explain extra biofilm removal remain to be elucidated.


Staphylococcus aureus , Titanium , Humans , Anti-Bacterial Agents , Biofilms , Bacteria
2.
Front Cell Infect Microbiol ; 13: 1228051, 2023.
Article En | MEDLINE | ID: mdl-37795382

Leptospira interrogans disseminates hematogenously to reach the target organs by disrupting epithelial adherens junctions (AJs), thus causing leptospirosis, which is a globally neglected zoonotic disease. L. interrogans induces E-cadherin (E-cad) endocytosis and cytoskeletal rearrangement during AJ disassembly, but the detailed mechanism remains unknown. Elucidation of AJ disassembly mechanisms will guide new approaches to developing vaccines and diagnostic methods. In this study, we combine proteomic and imaging analysis with chemical inhibition studies to demonstrate that disrupting the AJs of renal proximal tubule epithelial cells involves the degradation of two armadillo repeat-containing proteins, p0071 and p120-catenin, that stabilize E-cad at the plasma membrane. Combining proteasomal and lysosomal inhibitors substantially prevented p120-catenin degradation, and monolayer integrity destruction without preventing p0071 proteolysis. In contrast, the pan-caspase inhibitor Z-VAD-FMK inhibited p0071 proteolysis and displacement of both armadillo repeat-containing proteins from the cell-cell junctions. Our results show that L. interrogans induces p120-catenin and p0071 degradation, which mutually regulates E-cad stability by co-opting multiple cellular degradation pathways. This strategy may allow L. interrogans to disassemble AJs and disseminate through the body efficiently.


Delta Catenin , Leptospira interrogans , Adherens Junctions , Leptospira interrogans/metabolism , Proteomics , Catenins/metabolism
3.
PLoS Negl Trop Dis ; 17(4): e0011259, 2023 04.
Article En | MEDLINE | ID: mdl-37014918

BACKGROUND: Diarrheagenic Escherichia coli (DEC) is a group of bacterial pathogens that causes life-threatening diarrhea in children in developing countries. However, there is limited information on the characteristics of DEC isolated from patients in these countries. A detailed genomic analysis of 61 DEC-like isolates from infants with diarrhea was performed to clarify and share the characteristics of DEC prevalent in Vietnam. PRINCIPAL FINDINGS: DEC was classified into 57 strains, including 33 enteroaggregative E. coli (EAEC) (54.1%), 20 enteropathogenic E. coli (EPEC) (32.8%), two enteroinvasive E. coli (EIEC) (3.3%), one enterotoxigenic E. coli (ETEC), and one ETEC/EIEC hybrid (1.6% each), and surprisingly into four Escherichia albertii strains (6.6%). Furthermore, several epidemic DEC clones showed an uncommon combination of pathotypes and serotypes, such as EAEC Og130:Hg27, EAEC OgGp9:Hg18, EAEC OgX13:H27, EPEC OgGp7:Hg16, and E. albertii EAOg1:HgUT. Genomic analysis also revealed the presence of various genes and mutations associated with antibiotic resistance in many isolates. Strains that demonstrate potential resistance to ciprofloxacin and ceftriaxone, drugs recommended for treating childhood diarrhea, accounted for 65.6% and 41%, respectively. SIGNIFICANCE: Our finding indicate that the routine use of these antibiotics has selected resistant DECs, resulting in a situation where these drugs do not provide in therapeutic effects for some patients. Bridging this gap requires continuous investigations and information sharing regarding the type and distribution of endemic DEC and E. albertii and their antibiotic resistance in different countries.


Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Child , Humans , Infant , Escherichia coli Infections/microbiology , Vietnam/epidemiology , Diarrhea/epidemiology , Diarrhea/microbiology , Enteropathogenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/genetics , Genomics
4.
Trop Med Health ; 51(1): 5, 2023 Feb 02.
Article En | MEDLINE | ID: mdl-36732857

BACKGROUND: Cholera is a water-borne disease caused by toxigenic Vibrio cholerae serogroups O1 and O139. Not a few studies on the whole-genome analyses of V. cholerae O1 biotype El Tor have been published; however, the number of analyses for biotype classical is limited. The whole-genome analysis was made on a V. cholerae biotype classical strain, Man9, isolated in 1946 in Sasebo city, Nagasaki prefecture, from a returnee from the northeast part of China. METHODS: PacBio RSII was used to determine the whole-genome of Man9. De novo assemblies were made with CLC Genomics Workbench 8.5.1 and Canu. 2.0 and annotated by Prokka version 1.12. Upon determining the configuration of the CTX prophage region, combined procedures of PCR, RFLP with Southern blotting, and Sanger sequencing method were used. The phylogenetic tree was constructed by RaxML and visualized by Phandango. The identification of Cas genes and spacer sequences was made by CRISPR-finder and NCBI Blast search. These data were compared with those of V. cholerae serogroup O1 biotype classical O395. RESULTS: The Man9 carried the 2.9 Mb (Chr1) and 1.1 Mb (Chr2) chromosomes with 2683 and 1198 CDSs, respectively. The genome similarity between Man9 and O395 was 97.0% when the total genomes were compared. Man9 carried a 380-kb inversion on the Chr1, and 95-kb and 35-kb fragments were not present on the Chr1 and on the Chr2, respectively. Man9 monophyletically clustered with 23 other biotype classical strains on the core gene phylogenetic tree analyses. Man9 carries "CTXcla" and a stretch of "truncated CTXcla-CTXcla" on the Chr1 and the Chr2, respectively, which is the opposite arrangement of O395. Man9 carries CRISPR-Cas system subtype I-E with 33 spacers, 64% of which were identical to those of O395. CONCLUSIONS: Man9 differs from O395 by 3% on the total genome comparison; however, genomic analysis of a strain having circulated in the interpandemic period between the 6th and the 7th cholera pandemic is valuable and contributes to understanding the evolution of pathogenic V. cholerae.

5.
PLoS Negl Trop Dis ; 16(3): e0010234, 2022 03.
Article En | MEDLINE | ID: mdl-35358181

BACKGROUND: Leptospirosis, a zoonosis caused by species in the spirochete genus Leptospira, is endemic to the Yaeyama region in Okinawa, subtropical Japan. Species of the P1 subclade "virulent" group, within the genus Leptospira, are the main etiological agents of leptospirosis in Okinawa. However, their environmental persistence is poorly understood. This study used a combination of bacterial isolation and environmental DNA (eDNA) metabarcoding methods to understand the eco-epidemiology of leptospirosis in this endemic region. FINDINGS: Polymerase chain reaction (PCR) characterized twelve human clinical L. interrogans isolates belonging to the P1 subclade "virulent" subgroup and 11 environmental soil isolates of the P1subclade "low virulent" subgroup (genetically related to L. kmetyi, n = 1; L. alstonii, n = 4; L. barantonii, n = 6) from the Yaeyama region targeting four virulence-related genes (lipL32, ligA, ligB and lpxD1). Clinical isolates were PCR positive for at least three targeted genes, while all environmental isolates were positive only for lipL32. Analysis of infected renal epithelial cells with selected clinical and environmental strains, revealed the disassembly of cell-cell junctions for the Hebdomadis clinical strain serogroup. Comparison of leptospiral eDNA during winter and summer identified operational taxonomic units corresponding to the species isolated from soil samples (L. kmetyi and L. barantonii) and additional P2 subclade species (L. licerasiae, L. wolffii-related, among others) that were not detected by soil cultivation. Total Leptospira read counts were higher in summer than in winter and the analysis of leptospiral/animal eDNA relationship suggested Rattus spp. as a potential reservoir animal. CONCLUSION: Our study demonstrated high environmental Leptospira diversity in the Yaeyama region, particularly during summer, when most of the leptospirosis cases are reported. In addition, several Leptospira species with pathogenic potential were identified that have not yet been reported in Yaeyama; however, the environmental persistence of P1 subclade species previously isolated from human clinical cases in this region was absent, suggesting the need of further methodology development and surveillance.


Leptospira , Leptospirosis , Animals , Humans , Japan/epidemiology , Leptospirosis/epidemiology , Leptospirosis/microbiology , Rats , Serogroup , Zoonoses/microbiology
6.
Microbiol Res ; 258: 126995, 2022 May.
Article En | MEDLINE | ID: mdl-35220137

Monascus spp. are filamentous fungi used in fermented foods. They are also natural colorants and food preservatives. Certain metabolites of Monascus spp. lower cholesterol and have other health-promoting effects in humans. In the present study, we demonstrated that the fermentation products of Monascus spp. inhibited ATP synthesis and motility in toxigenic Vibrio cholerae. Single-cell tracking and rotation assays on single flagella showed that Monascus fermentation extract (MFE) significantly impaired V. cholerae swimming by disrupting flagellar rotation. A membrane potential-sensitive carbocyanine dye revealed that MFE depolarized the V. cholerae cell membrane which, in turn, lowered the membrane potential and, by extension, restricted ATP synthesis and flagellar rotation. MFE also severely hindered the motility of other pathogenic bacteria such as V. parahaemolyticus, Pseudomonas aeruginosa, Salmonella enterica Typhimurium, and Leptospira interrogans. The foregoing findings indicate that Monascus fermentation extract could potentially preventing infection caused by multiple pathogenic bacteria as the conventional prophylaxes and slow their progression and lower mortality and morbidity.


Monascus , Vibrio cholerae , Fermentation , Flagella/metabolism , Humans , Monascus/metabolism , Salmonella typhimurium , Vibrio cholerae/physiology
7.
Article En | MEDLINE | ID: mdl-35206644

In Vietnam, data on the risk factors for diarrhea at the community level remain sparse. This study aimed to provide an overview of diarrheal diseases in an agricultural community in Vietnam, targeting all age groups. Specifically, we investigated the incidence of diarrheal disease at the community level and described the potential risk factors associated with diarrheal diseases. In this prospective cohort study, a total of 1508 residents were enrolled during the 54-week study period in northern Vietnam. The observed diarrheal incidence per person-year was 0.51 episodes. For children aged <5 years, the incidence per person-year was 0.81 episodes. Unexpectedly, the frequency of diarrhea was significantly higher among participants who used tap water for drinking than among participants who used rainwater. Participants who used a flush toilet had less frequent diarrhea than those who used a pit latrine. The potential risk factors for diarrhea included the source of water used in daily life, drinking water, and type of toilet. However, the direct reason for the association between potential risk factors and diarrhea was not clear. The infection routes of diarrheal pathogens in the environment remain to be investigated at this study site.


Diarrhea , Drinking Water , Child , Child, Preschool , Diarrhea/epidemiology , Humans , Infant , Prospective Studies , Risk Factors , Vietnam/epidemiology
9.
Cell Microbiol ; 23(9): e13343, 2021 09.
Article En | MEDLINE | ID: mdl-33864347

Bacterial pathogens have evolved multiple strategies to disassemble epithelial cell apical junctional complexes (AJCs) and infect epithelial cells. Leptospirosis is a widespread zoonotic infection, mainly caused by Leptospira interrogans, and its dissemination across host cell barriers is essential for its pathogenesis. However, the mechanism of bacterial dissemination across epithelial cell barriers remains poorly characterised. In this study, we analysed the interaction of L. interrogans with renal proximal tubule epithelial cells (RPTECs) and found that at 24 hr post-infection, L. interrogans remain in close contact with the plasma membrane of the RPTEC by extracellularly adhering or crawling. Leptospira interrogans cleaved E-cadherin and induced its endocytosis with release of the soluble N-terminal fragment into the extracellular medium. Concomitantly, a gradual decrease in transepithelial electrical resistance (TEER), mislocalisation of AJC proteins (occludin, claudin-10, ZO-1, and cingulin) and cytoskeletal rearrangement were observed. Inhibition of clathrin-mediated E-cadherin endocytosis prevented the decrease in TEER. We showed that disassembly of AJCs in epithelial cells and transmigration of bacteria through the paracellular route are important for the dissemination of L. interrogans in the host.


Leptospira interrogans , Leptospirosis , Endocytosis , Epithelial Cells , Humans , Intercellular Junctions
10.
Viruses ; 13(4)2021 04 12.
Article En | MEDLINE | ID: mdl-33921493

To clarify the mechanism of Seoul orthohantavirus (SEOV) persistence, we compared the humoral and cell-mediated immune responses to SEOV in experimentally and naturally infected brown rats. Rats that were experimentally infected by the intraperitoneal route showed transient immunoglobulin M (IgM) production, followed by an increased anti-SEOV immunoglobulin G (IgG) antibody response and maturation of IgG avidity. The level of SEOV-specific cytotoxic T lymphocytes (CTLs) peaked at 6 days after inoculation and the viral genome disappeared from serum. In contrast, naturally infected brown rats simultaneously had a high rate of SEOV-specific IgM and IgG antibodies (28/43). Most of the IgM-positive rats (24/27) had the SEOV genome in their lungs, suggesting that chronic SEOV infection was established in those rats. In female rats with IgG avidity maturation, the viral load in the lungs was decreased. On the other hand, there was no relationship between IgG avidity and viral load in the lungs in male rats. A CTL response was not detected in naturally infected rats. The difference between immune responses in the experimentally and naturally infected rats is associated with the establishment of chronic infection in natural hosts.


Antibodies, Viral/blood , Hemorrhagic Fever with Renal Syndrome , Immunoglobulin G/blood , Immunoglobulin M/blood , Seoul virus , Viral Load , Animals , Female , Hemorrhagic Fever with Renal Syndrome/immunology , Male , Rats
11.
Parasitol Int ; 83: 102341, 2021 Aug.
Article En | MEDLINE | ID: mdl-33819572

The purpose of this study was to investigate the occurrence of Cryptosporidium infection and the potential for transmission of Cryptosporidium spp. between animals and humans in northern Vietnam. A total of 2715 samples (2120 human diarrheal samples, 471 human non-diarrheal samples, and 124 animal stool samples) were collected through our community survey in an agricultural area. All samples were tested for Cryptosporidium spp. by direct immunofluorescence assay (DFA) using a fluorescent microscope. DNA extraction, PCR amplification of three genes (COWP, SSU-rRNA, and GP60), and sequencing analysis were performed to identify Cryptosporidium spp. Of 2715 samples, 15 samples (10 diarrheal samples, 2 non-diarrheal samples, and 3 animal stool samples) tested positive by PCR for the COWP gene. Three species of Cryptosporidium spp. were identified as C. canis (from six human diarrheal samples, two human non-diarrheal samples, and one dog sample), C. hominis (from four human diarrheal samples), and C. suis (from two pig samples) by sequencing the amplified COWP and/or SSU-rRNA genes. In terms of C. hominis, the GP60 subtype IeA12G3T3 was detected in all four human diarrheal samples. Although the number of positive samples was very small, our epidemiological data showed that the emerging pattern of each of the three species (C. canis, C. hominis, and C. suis) was different at this study site. While C. hominis and C. suis were only detected in human and pig samples, respectively, C. canis was detected in samples from both dogs and humans. We suspect that C. canis infections in humans at this study site may be due to environmental contamination with animal and human feces.


Cryptosporidiosis/epidemiology , Cryptosporidium/isolation & purification , Dog Diseases/epidemiology , Swine Diseases/epidemiology , Zoonoses/epidemiology , Animals , Cryptosporidiosis/parasitology , Cryptosporidium/classification , Dog Diseases/parasitology , Dogs , Feces/parasitology , Humans , Molecular Epidemiology , Species Specificity , Sus scrofa , Swine , Swine Diseases/parasitology , Vietnam/epidemiology , Zoonoses/parasitology
12.
Parasite Epidemiol Control ; 12: e00193, 2021 Feb.
Article En | MEDLINE | ID: mdl-33490658

Giardia spp. is detected frequently in humans and animals. Although many studies have been conducted on the epidemiology of giardiasis, there is a scarcity of information on the genetic diversity and the dynamics of transmission of Giardia spp. in Vietnam. The zoonotic potential of Giardia spp. remains elusive. The objective of this study was to determine the genetic diversity of Giardia spp. in both humans and livestock to assess the existence of a route of infection between livestock and humans. Our goal was to assess the role animals play in the epidemiology of human infection in northern Vietnam. In Hien Khanh commune in northern Vietnam, 311 households with 1508 residents were randomly selected for a diarrheal cohort study. Of these, 2120 human diarrheal samples were collected from 1508 residents in 2014 and 2017. Of these, non-diarrheal samples were cross-sectionally collected from 471 residents. At the same site, livestock samples from buffalo, dairy and beef cattle, pigs, and dogs were collected. All stool samples were examined for Giardia spp. by Direct Immunofluorescence Assay (DFA) using fluorescent microscope. DNA extraction, PCR analysis of the 3 genes (bg, gdh, tpi), and sequencing analysis were continuously carried out. A total of 23 animal stool samples, 8 human non-diarrheal samples, and 36 human diarrheal samples were Giardia spp. were positive by PCR using the bg and gdh genes. Giardia spp. assemblage AII and E were detected in both animal samples and human samples in this study site. The detection of assemblage E in human stool samples suggests the first human case report in Vietnam. We assume that the unexpected human infection of all Giardia assemblages including A, B, and E may be due to an environment contaminated with animal and human feces in this village.

13.
Open Forum Infect Dis ; 7(11): ofaa492, 2020 Nov.
Article En | MEDLINE | ID: mdl-33244479

We performed whole-genome sequencing of Vibrio cholerae O1 isolates from Laos, Thailand, and Vietnam, where cholera outbreaks occurred, to determine their genetic lineages. Core genome phylogenetic analysis revealed that the isolates located in same lineage without regional clusters, which suggests that closely related strains circulated in Southeast Asia.

14.
PLoS Negl Trop Dis ; 14(7): e0008437, 2020 07.
Article En | MEDLINE | ID: mdl-32701971

BACKGROUND: Leptospirosis is one of the most significant zoonoses across the world not only because of its impact on human and animal health but also because of the economic and social impact on agrarian communities. Leptospirosis is endemic in Sri Lanka where paddy farming activities, the use of draught animals in agriculture, and peridomestic animals in urban and rural areas play important roles in maintaining the infection cycle of pathogenic Leptospira, especially concerning animals as a potential reservoir. In this study, an environmental DNA (eDNA) metabarcoding methodology was applied in two different agro-ecological regions of Sri Lanka to understand the eco-epidemiology of leptospirosis. METHODOLOGY/PRINCIPAL FINDINGS: Irrigation water samples were collected in Kandy District (wet zone mid-country region 2) and Girandurukotte, Badulla District (intermediate zone low-country region 2); and analysed for the presence of pathogenic Leptospira, associated microbiome and the potential reservoir animals. Briefly, we generated PCR products for high-throughput sequencing of multiple amplicons through next-generation sequencing. The analysis of eDNA showed different environmental microbiomes in both regions and a higher diversity of Leptospira species circulating in Kandy than in Girandurukotte. Moreover, the number of sequence reads of pathogenic Leptospira species associated with clinical cases such as L. interrogans was higher in Kandy than in Girandurukotte. Kandy also showed more animal species associated with pathogenic bacterial species than Girandurukotte. Finally, several pathogenic bacterial species including Arcobacter cryaerophilus, responsible for abortion in animals, was shown to be associated with pathogenic Leptospira. CONCLUSIONS/SIGNIFICANCE: Leptospirosis has been considered to be endemic in wet regions, consistently, leptospiral sequences were detected strongly in Kandy. The great Leptospira species diversity in Kandy observed in this study shows that the etiological agents of leptospirosis in Sri Lanka might be underestimated. Furthermore, our eDNA metabarcoding can be used to discriminate bacterial and animal species diversity in different regions and to explore environmental microbiomes to identify other associated bacterial pathogens in the environment.


Fresh Water/microbiology , Leptospira/isolation & purification , Leptospirosis/epidemiology , Leptospirosis/microbiology , Agricultural Irrigation , Animals , DNA, Bacterial/genetics , DNA, Environmental/genetics , Humans , Leptospira/classification , Leptospira/genetics , Phylogeny , Sri Lanka/epidemiology , Zoonoses/microbiology , Zoonoses/transmission
15.
J Virol ; 94(12)2020 06 01.
Article En | MEDLINE | ID: mdl-32295903

Cell entry by HIV-1 is mediated by its principal receptor, CD4, and a coreceptor, either CCR5 or CXCR4, with viral envelope glycoprotein gp120. Generally, CCR5-using HIV-1 variants, called R5, predominate over most of the course of infection, while CXCR4-using HIV-1 variants (variants that utilize both CCR5 and CXCR4 [R5X4, or dual] or CXCR4 alone [X4]) emerge at late-stage infection in half of HIV-1-infected individuals and are associated with disease progression. Although X4 variants also appear during acute-phase infection in some cases, these variants apparently fall to undetectable levels thereafter. In this study, replication-competent X4 variants were isolated from plasma of drug treatment-naive individuals infected with HIV-1 strain CRF01_AE, which dominantly carries viral RNA (vRNA) of R5 variants. Next-generation sequencing (NGS) confirmed that sequences of X4 variants were indeed present in plasma vRNA from these individuals as a minor population. On the other hand, in one individual with a mixed infection in which X4 variants were dominant, only R5 replication-competent variants were isolated from plasma. These results indicate the existence of replication-competent variants with different coreceptor usage as minor populations.IMPORTANCE The coreceptor switch of HIV-1 from R5 to CXCR4-using variants (R5X4 or X4) has been observed in about half of HIV-1-infected individuals at late-stage infection with loss of CD4 cell count and disease progression. However, the mechanisms that underlie the emergence of CXCR4-using variants at this stage are unclear. In the present study, CXCR4-using X4 variants were isolated from plasma samples of HIV-1-infected individuals that dominantly carried vRNA of R5 variants. The sequences of the X4 variants were detected as a minor population using next-generation sequencing. Taken together, CXCR4-using variants at late-stage infection are likely to emerge when replication-competent CXCR4-using variants are maintained as a minor population during the course of infection. The present study may support the hypothesis that R5-to-X4 switching is mediated by the expansion of preexisting X4 variants in some cases.


HIV Infections/immunology , HIV-1/genetics , Receptors, CCR5/genetics , Receptors, CXCR4/genetics , Receptors, HIV/immunology , Adult , Aged , Amino Acid Sequence , CD4 Lymphocyte Count , Coinfection , Disease Progression , Female , Gene Expression Regulation , HIV Infections/genetics , HIV Infections/virology , HIV-1/classification , HIV-1/immunology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Male , Middle Aged , Phylogeny , Protein Binding , RNA, Viral/genetics , RNA, Viral/immunology , Receptors, CCR5/immunology , Receptors, CXCR4/immunology , Receptors, HIV/genetics , Viral Tropism/genetics , Viral Tropism/immunology , Virus Attachment , Virus Internalization
16.
Biochem Biophys Res Commun ; 508(1): 46-51, 2019 01 01.
Article En | MEDLINE | ID: mdl-30470571

HIV-1 CRF01_AE viruses are highly prevalent in Southeast Asia. However, vulnerability sites in Env of CRF01_AE viruses have not been investigated sufficiently. We examined the sensitivity of CRF01_AE viruses from Japan and Vietnam, together with subtype B viruses from Japan, to neutralization and Fc-mediated signaling. Neutralization coverage of broadly neutralizing antibodies (bnAbs), 2G12 and b12, was significantly low against CRF01_AE viruses, compared with subtype B viruses. In contrast, the conventional antibody targeting the CD4 binding site (CD4bs), 49G2, showed better neutralization and Fc-mediated signaling activities against CRF01_AE viruses than subtype B viruses. Fc-mediated signaling activity of anti-CD4 induced (CD4i) antibody, 4E9C, was also detected against CRF01_AE viruses more than subtype B viruses. These results suggest that conventional antibodies against CD4bs and CD4i may play an important role in the control of CRF01_AE viruses.


HIV Infections/immunology , HIV Infections/virology , HIV-1/classification , HIV-1/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites/immunology , CD4 Antigens/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV-1/genetics , Humans , Neutralization Tests , Receptors, IgG/immunology , Signal Transduction/immunology , env Gene Products, Human Immunodeficiency Virus/genetics
17.
Microbiol Immunol ; 62(10): 635-650, 2018 Oct.
Article En | MEDLINE | ID: mdl-30211956

Vibrio cholerae O1 causes cholera, and cholera toxin, the principal mediator of massive diarrhea, is encoded by ctxAB in the cholera toxin (CTX) prophage. In this study, the structures of the CTX prophage region of V. cholerae strains isolated during the seventh pandemic wave 1 in Asian countries were determined and compared. Eighteen strains were categorized into eight groups by CTX prophage region-specific restriction fragment length polymorphism and PCR profiles and the structure of the region of a representative strain from each group was determined by DNA sequencing. Eight representative strains revealed eight distinct CTX prophage regions with various combinations of CTX-1, RS1 and a novel genomic island on chromosome I. CTX prophage regions carried by the wave 1 strains were diverse in structure. V. cholerae strains with an area specific CTX prophage region are believed to circulate in South-East Asian countries; additionally, multiple strains with distinct types of CTX prophage region are co-circulating in the area. Analysis of a phylogenetic tree generated by single nucleotide polymorphism differences across 2483 core genes revealed that V. cholerae strains categorized in the same group based on CTX prophage region structure were segregated in closer clusters. CTX prophage region-specific recombination events or gain and loss of genomic elements within the region may have occurred at much higher frequencies and contributed to producing a panel of CTX prophage regions with distinct structures among V. cholerae pathogenic strains in lineages with close genetic backgrounds in the early wave 1 period of the seventh cholera pandemic.


Cholera Toxin/genetics , Phylogeny , Polymorphism, Restriction Fragment Length/genetics , Polymorphism, Single Nucleotide/genetics , Prophages/genetics , Vibrio cholerae O1/genetics , Asia/epidemiology , Cholera/epidemiology , Cholera Toxin/classification , Chromosomes, Bacterial/genetics , DNA, Bacterial , Genes, Bacterial/genetics , Genetic Variation , Genomic Islands , Humans , Pandemics , Sequence Analysis, DNA , Vibrio cholerae O1/classification , Vibrio cholerae O1/isolation & purification , Vibrio cholerae O1/pathogenicity
18.
BMC Microbiol ; 18(1): 64, 2018 07 04.
Article En | MEDLINE | ID: mdl-29973159

BACKGROUND: Leptospira interrogans is a pathogenic, spirochetal bacterium that is responsible for leptospirosis, an emerging worldwide zoonosis. Leptospires colonize the renal proximal tubules and chronically infect the kidney. Live bacteria are excreted into urine, contaminating the environment. While it is well known that leptospires can persist in the kidneys without signs of disease for several months, the interactions of leptospires with the proximal renal epithelial tubule cells that allow the chronic renal colonization have not been elucidated yet. In the present study, we compared the interactions between a virulent, low passage (LP) strain and a cultured-attenuated, high passage (HP) strain with renal proximal tubule epithelial cells (RPTECs) to elucidate the strategies used by Leptospira to colonize the kidney. RESULTS: Kinetics analysis of kidney colonization in a mouse model of chronic infection performed by quantitative real-time PCR and immunofluorescence, showed that the LP strain reached the kidney by 3 days post infection (pi) and attached to the basal membrane side of the renal epithelial cells. At 10 days pi, some leptospires were attached to the luminal side of the tubular epithelia and the number of colonizing leptospires gradually increased. On the other hand, the HP strain was cleared during hematogenous dissemination and did not colonize the kidney. Transmission electron microscopy analysis of LP-infected kidneys at 25 days pi showed aggregated leptospires and membrane vesicles attached to the epithelial brush border. Leptospiral kidney colonization altered the organization of the RPTEC brush border. An in vitro model of infection using TCMK-1 cells, showed that leptospiral infection induced a host stress response, which is delayed in LP-infected cells. CONCLUSIONS: After hematogenous dissemination, leptospires create protective and replicative niches in the base membrane and luminal sides of the RPTECs. During the long-term colonization, leptospires attached to the RPTEC brush borders and membrane vesicles might be involved in the formation of a biofilm-like structure in vivo. Our results also suggested that the virulent strain is able to manipulate host cell stress responses to promote renal colonization.


Epithelial Cells/microbiology , Kidney Tubules, Proximal/microbiology , Leptospira interrogans/physiology , Leptospirosis/microbiology , Animals , Bacterial Translocation , Cell Line, Transformed , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Female , Kidney/microbiology , Leptospira interrogans/growth & development , Leptospira interrogans/pathogenicity , Leptospirosis/metabolism , Mice, Inbred C57BL , Microvilli/microbiology , Oxidative Stress , Virulence
19.
Heliyon ; 4(4): e00616, 2018 Apr.
Article En | MEDLINE | ID: mdl-29862373

Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. The currently used diagnostic tests are time-consuming, require technical expertise or require the use of sophisticated equipment. Clinicians have pointed out the urgent need to develop a rapid test for the diagnosis of acute leptospirosis with a non-invasive and easy sampling method. In this study, we have focused on a leptospiral enzyme, 3-hydroxyacyl-CoA dehydrogenase (3-HADH), as a urinary biomarker of acute leptospirosis. A specific antiserum for pathogenic Leptospira spp. was produced, targeting a peptide corresponding to amino acids 410 to 424 of 3-HADH. The antiserum was used to investigate whether 3-HADH is excreted in the urine by Western blotting. Among 70 suspected leptospirosis patients, 40 were laboratory confirmed by microscopic agglutination test (MAT) using paired sera samples and/or polymerase chain reaction (PCR). In the acute phase of the laboratory-confirmed leptospirosis cases, sensitivity for 3-HADH, blood PCR and urine PCR were 52.5%, 57.5% and 12%, respectively. 3-HADH was detected from 2 days post-onset of illness (p.o) and could be detected at least until 9 days p.o. The combination of PCR and 3-HADH detection increased sensitivity of diagnosis to 100% in samples collected between 1 and 3 days p.o., and to 82% in samples collected between 4 and 9 days p.o. Our results suggested that the detection of 3-HADH can support a clinical diagnosis of leptospirosis, especially when serological methods are negative during the acute phase.

20.
Microbiol Immunol ; 2018 May 23.
Article En | MEDLINE | ID: mdl-29790584

We screened a total of 672 plant-tissue extracts to search for phytochemicals that inhibit the function of the type III secretion system (T3SS) of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among candidates examined, we found that an extract from the leaves of Psidium guajava (guava) inhibited the secretion of the EspB protein from EPEC and EHEC without affecting bacterial growth. The guava extract (GE) also inhibited EPEC and EHEC from adhering to and injecting EspB protein into HEp-2 cells. GE seemed to block the translocation of EspB from the bacterial cells to the culture medium. In addition to EPEC and EHEC, GE also inhibited the T3SS of Yersinia pseudotuberculosis and Salmonella enterica serovar Typhimurium. After exposure to GE, Y. pseudotuberculosis stopped the secretion of Yop proteins and lost its ability to induce the apoptosis of mouse bone marrow-derived macrophages. S. Typhimurium exposed to GE ceased the secretion of Sip proteins and lost its ability to invade HEp-2 cells. GE inhibited EspC secretion, the type V secretion protein of EPEC, but not Shiga toxin2 from EHEC. Thus, our results suggest that guava leaves contain a novel type of antimicrobial compound that could be used for the therapeutic treatment and prevention of gram-negative enteropathogenic bacterial infections.

...