Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biosci Bioeng ; 133(3): 281-290, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35034849

RESUMEN

Hair follicle dermal papilla cells (DPCs) are specialized mesenchymal cells that play pivotal roles in hair formation, growth, and cycles, and they are considered as a cell source in hair regenerative medicine. Rodent dermal papilla cells have been shown to induce de novo hair follicle generation in the skin of recipients following transplantation, suggesting that dermal papilla cells can reprogram epidermal microenvironments. However, human DPCs (hDPCs) lose their ability to generate de novo hair follicles under conventional culture methods. We investigated the effects of electrical stimulation (ES) on hDPCs to restore the depressed trichogenic activity. We demonstrated that ES with a polypyrrole (PPy)-modified electrode upregulated trichogenic gene expression in hDPCs in vitro, and the activated cells when transplanted into mice generated double the number of hairs compared to that without the ES. Using specific inhibitors, we revealed that the mechanisms behind the electrical activation are associated with voltage-gated ion channels. Further, ES can be adapted for hDPCs from a patient with androgenic alopecia. Thus, this approach is potentially beneficial in preparing hDPCs for hair regenerative medicine.


Asunto(s)
Polímeros , Medicina Regenerativa , Animales , Células Cultivadas , Estimulación Eléctrica , Humanos , Ratones , Pirroles
2.
Commun Biol ; 3(1): 136, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242062

RESUMEN

The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 1010 cells/cm3. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water.


Asunto(s)
Bacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Procesos Heterotróficos , Silicatos , Bacterias/genética , Bacterias/metabolismo , Carbono/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Microbiota , Océano Pacífico , Ribotipificación
3.
Anim Sci J ; 91(1): e13350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32219980

RESUMEN

This study investigated the effect of type-I interferon (IFN) on the expression of matrix metalloproteinases (MMPs) of the bovine endometrial stromal cells (BES) and epithelial cells (BEE). The cells were separated and purified from the caruncles and cultured in DMEM/F-12 containing 10% fetal bovine serum. Spheroids were generated by using ascorbate. Zymograms of the supernatant showed that BEE predominantly expressed MMP-9, whereas MMP-2 was expressed in BES and homo-spheroids. While MMPs expression was not detected in hetero-spheroids. Real-time quantitative PCR revealed that type-I IFN and P4 suppressed the gene expression of MMP-2 and MMP-9 in hetero-spheroids, respectively. On the other hand, gelatin zymography analysis of the supernatant showed that type-I IFN strongly promote the clearance of MMPs. While zymograms of the MMPs stocked in the hetero-spheroids were significantly reduced by type-I IFN. Phenylmethanesulfonyl fluoride and leupeptin (both are serine proteinase inhibitors) significantly repressed the clearance of MMP-2 and MMP-9 induced by type-I IFN. Moreover, collagen fibers in hetero-spheroids significantly decreased after the treatment with type-I IFN. In conclusion, it was suggested that type-I IFN participate in the tissue remodeling by regulation the clearance of MMPs.


Asunto(s)
Bovinos/metabolismo , Endometrio/citología , Endometrio/metabolismo , Expresión Génica/efectos de los fármacos , Interferón Tipo I/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Células del Estroma/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Embarazo
4.
Front Microbiol ; 10: 2793, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866969

RESUMEN

One of the most promising planetary bodies that might harbor extraterrestrial life is Mars, given the presence of liquid water in the deep subsurface. The upper crust of Mars is mainly composed of >3.7-billion-year-old basaltic lava where heat-driven fluid circulation is negligible. The analogous crustal environment to the Martian subsurface is found in the Earth's oceanic crust composed of basaltic lava. The basaltic crust tends to cool down for 10-20-million-years after formation. However, microbial life in old cold basaltic lava is largely unknown even in the Earth's oceanic crust, because the lack of vigorous circulation prevents sampling of pristine crustal fluid from boreholes. Alternatively, it is important to investigate deep microbial life using pristine drill cores obtained from basaltic lava. We investigated a basaltic rock core sample with mineral-filled fractures drilled during Integral Ocean Drilling Project Expedition 329 that targeted 104-million-year-old oceanic crust. Mineralogical characterizations of fracture-infilling minerals revealed that fractures/veins were filled with Mg-rich smectite called saponite and calcium carbonate. The organic carbon content from the saponite-rich clay fraction in the core sample was 23 times higher than that from the bulk counterpart, which appears to be sufficient to supply energy and carbon sources to saponite-hosted life. Furthermore, a newly developed method to detect microbial cells in a thin-section of the saponite-bearing fracture revealed the dense colonization of SYBR-Green-I stained microbial cells spatially associated with saponite. These results suggest that the presence of saponite in old cold basaltic crust is favorable for microbial life. In addition to carbonaceous chondrite, saponite is a common product of low-temperature reactions between water and mafic minerals on Earth and Mars. It is therefore expected that deep saponite-bearing fractures could host extant life and/or the past life on Mars.

5.
Sci Rep ; 9(1): 11306, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383916

RESUMEN

Basalt weathering in oceanic crust controls long-term elemental cycling on Earth. It is unknown whether basalt weathering tends to continue in unsedimented oceanic crust with formation ages of >10-20 million years (Ma), when fluid circulation is restricted by the formation of secondary minerals in fractures/veins. We investigated basalt weathering in 13.5-, 33.5- and 104-Ma oceanic crust below the South Pacific Gyre by combining bulk and in-situ clay mineral characterisations. Here we show the formation of iron-rich smectite at the rims of fractures/veins in 33.5-Ma and 104-Ma core samples from depths as great as 121 metres below the seafloor. In contrast, iron-rich smectite formation was not observed in three 13.5-Ma core samples, which suggests that iron-rich smectite formation may be affected by the dilution of aqueous silica supplied from basalt dissolution by actively circulating fluid. As iron-rich smectite from the 33.5-Ma and 104-Ma core samples was more enriched in Mg and K than that typically found at hydrothermal mounds, iron-rich smectite formation appears to result from basalt weathering rather than hydrothermal alteration. Our results suggest that unsedimented basaltic basement is permeable and reactive to host microbial life in aged oceanic crust on Earth and possibly in the deep subsurface on Mars.

6.
Anim Sci J ; 89(11): 1609-1621, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30182475

RESUMEN

Endometrial gene expression is primarily regulated by the ovarian steroids and pregnancy recognition factors. This study was aimed to characterize differential expression genes (DEGs) in bovine endometrium together with the analysis of their promoter region. Bovine uteri at follicular stage (FS), luteal stage (LS), and implantation stage (IS) at Day 18 of pregnancy were collected. Total RNA extracted and prepared cDNA were then subjected to high-throughput sequencing. For promoter analysis, 1 kb upstream promoter region of each DEG was analyzed. The numbers of highly expressed DEGs were 496 and 597 at FS and LS, respectively. When compared the gene expression of IS with LS, 383 and 346 DEGs showed higher and lower expression at IS, respectively. It was also observed that 20-30 transcription factors (TFs) were included in each DEGs. In addition, promoter analyses estimated 150-160 TFs for each stage. DLX4 and interferon regulatory factor 4 (IRF4) at FS, and IRF5, IRF9, STAT1, and STAT2 at IS were in common to DEGs and estimated TFs, respectively. This study highlighted potential molecular mechanisms controlling endometrial function during estrus cycle and IS, which will further guide to better understand the endometrial functions in future studies.


Asunto(s)
Bovinos/genética , Bovinos/fisiología , Endometrio/metabolismo , Endometrio/fisiología , Estro/genética , Estro/metabolismo , Expresión Génica , Preñez/genética , Preñez/metabolismo , Regiones Promotoras Genéticas/genética , Animales , ADN Complementario/análisis , ADN Complementario/aislamiento & purificación , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio , Factores Reguladores del Interferón , Embarazo , ARN/análisis , ARN/aislamiento & purificación , Factor de Transcripción STAT1 , Factor de Transcripción STAT2 , Factores de Transcripción
7.
Anim Sci J ; 86(5): 523-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25496024

RESUMEN

This study aimed to develop an in vitro model for the analysis of the bovine endometrium. Immunofluorescent staining revealed that the hetero-spheroids and the cultured explants showed almost similar structure in the localization of bovine endometrial epithelial cells and endometrial stromal cells, except the glandular-like structure of the epithelial cells inside the explants. Gelatin zymography revealed that the hetero-spheroids did not express matrix metalloproteinases (MMPs) after 4 days of culture, but strong MMP expressions were observed in the cultured explants until 7 days of culture. Additionally, expression of progesterone receptor (PR), estrogen receptor alpha (ERα), type I interferon receptor 1 (IFNAR1) and 2 (IFNAR2) messenger RNA was observed both in the homo- and hetero-spheroids. The expression of oxytocin receptor (OTR) mRNA in E2 and E2+P4 (1,3,5(10)-Estratrien-3, 17ß-diol + 4-Pregnen-3, 20-dinone) treated groups were significantly (P < 0.05) higher than that of the control group of spheroids. In case of cultured explants, the expression of PR and OTR mRNA were significantly (P < 0.05) higher in E2 treated groups compared to the control groups. Hepatocyte growth factor (HGF) mRNA expression was also higher in P4 treated groups at 10 days in culture (P < 0.05). In a nutshell, the in vitro model developed in this study for the analysis of the endometrium may provide a new platform for extensive research on bovine endometrial function.


Asunto(s)
Endometrio/citología , Endometrio/metabolismo , Modelos Biológicos , Animales , Bovinos , Células Cultivadas , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Esferoides Celulares/metabolismo , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA