Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 222
1.
ACS Appl Mater Interfaces ; 16(15): 18782-18789, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38567820

Due to its affordable cost, excellent redox capability, and relatively effective resistance to corrosion in alkaline environments, spinel Co3O4 demonstrates potential as a viable alternative to noble-metal-based electrocatalysts. Nevertheless, these materials continue to exhibit drawbacks, such as limited active surface area and inadequate intrinsic conductivity. Researchers have been trying to increase the electrical conductivity of Co3O4 nanostructures by integrating them with various conductive substrates due to the low conductivity of pristine Co3O4. In this study, uniform cobalt glycerate solid spheres are first synthesized as the precursor and subsequently transformed into cobalt oxide microspheres by a simple annealing procedure. Co3O4 grown on the surface of Ti3C2Tx-MXene nanosheets (Co3O4/MXene) was successfully synthesized through electrostatic attraction. In order to create a positively charged surface, the Co3O4 microspheres were treated with aminopropyltriethoxysilane. The Co3O4/MXene exhibited a low overpotential of 118 mV at 10 mA cm-2 and a Tafel slope of 113 mV dec-1 for the hydrogen evolution reaction, which is much lower than the pristine Co3O4 at 232 and 195.3 mV dec-1.

2.
J Chromatogr A ; 1725: 464909, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38688052

Membrane technology has revolutionized various fields with its energy efficiency, versatility, user-friendliness, and adaptability. This study introduces a microfluidic chip, comprised of silicone rubber and polymethylmethacrylate (PMMA) sheets to explore the impacts of polymeric support morphology on electro-membrane extraction efficiency, representing a pioneering exploration in this field. In this research, three polyvinylidenefluoride (PVDF) membranes with distinct pore sizes were fabricated and their characteristics were assessed through field-emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). This investigation centers on the extraction of three widely prescribed non-steroidal anti-inflammatory drugs: aspirin (ASA), naproxen (NAP), and ibuprofen (IBU). Quantitative parameters in the extraction process including voltage, donor phase flow rate, and acceptor phase composition were optimized, considering the type of membrane as a qualitative factor. To assess the performance of the fabricated PVDF membranes, a comparative analysis with a commercially available Polypropylene (PP) membrane was conducted. Efficient enrichment factors of 30.86, 23.15, and 21.06 were attained for ASA, NAP, and IBU, respectively, from urine samples under optimal conditions using the optimum PVDF membrane. Significantly, the choice of the ideal membrane amplified the purification levels of ASA, NAP, and IBU by factors of 1.6, 7.5, and 40, respectively.


Ibuprofen , Membranes, Artificial , Polyvinyls , Polyvinyls/chemistry , Ibuprofen/isolation & purification , Ibuprofen/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Humans , Naproxen/isolation & purification , Naproxen/chemistry , Aspirin/chemistry , Aspirin/isolation & purification , Microfluidic Analytical Techniques , Limit of Detection , Fluorocarbon Polymers
3.
J Food Sci Technol ; 61(3): 573-584, 2024 Mar.
Article En | MEDLINE | ID: mdl-38327853

In this study, determination of aromatic compounds in cheese samples was performed by headspace solid-phase microextraction (HS-SPME) using a new adsorbent as a novel coated fiber in combination with a gas chromatography/mass spectrometry or flame ionization detector to evaluate the changes during ripening. Brine and ultrafiltrated (UF) cheese were sampled via HS-SPME and analyzed by gas chromatography/mass spectrometry. Polysulfone and mesoporous carbon nitride were used as two types of fibers for coating. The results showed that the pH had significant decreased during the 120 days for brine cheese (p < 0.001), and during the 90 days (p < 0.001) for UF cheese. Acidity was relatively stable during the ripening period for both cheeses (p > 0.05). Protein content decreased during the ripening period for both cheeses (p < 0.001). Moisture content also significantly decreased during the ripening period for both cheeses (p < 0.001). 74 compounds were identified in brine cheese and 27 major components in UF cheese. Fatty acids were the predominant components, followed by aldehydes (n: 17, 22.9%), alcohol (n; 12, 16.2%), ester (n: 11, 14.8%), alkane (n: 7, 9.4%), and ketone (n: 6, 8.1%) for white brine cheese, while for UF cheese fatty acid (n: 12, 44.4%) and aldehyde (n: 5, 18.5%), alcohol (n: 3, 11.1%), ketone (n: 3, 11.1%), ester (n: 2, 7.4%) and alkane (n: 1, 3.7%).

4.
Mikrochim Acta ; 190(12): 464, 2023 11 10.
Article En | MEDLINE | ID: mdl-37947885

A novel and efficient on-line microextraction on a screw coupled with high-performance liquid chromatography with an ultraviolet-visible detector was developed to extract and determine trace quantities of five opium alkaloids. All detections of the analytes were achieved at 210 nm. The surface of the screw grooves was electrochemically coated with the carbon nanotubes-COOH/polyaniline composite. The surface characterization was assessed by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The prepared screw was inserted into a cartridge of a guard column, and then the constructed microextraction on a screw device was placed in the loop of a six-port HPLC injection valve. The parameters affecting the extraction efficiency of the analytes were optimized using the one variable-at-a-time method. The effective parameters for the extraction efficiency of the analytes, including sample volume, extraction time, sampling flow rate, desorption solvent type, ionic strength, and pH were investigated and optimized. Under optimal conditions, the detection limits were 3-10 µg L-1, and the linear dynamic ranges were 10-2000 µg L-1 with a coefficient of determination greater than 0.9940. The inter-day and intra-day (n = 3) relative standard deviations were less than 7% and 5%, respectively. The proposed method was simple and reproducible, with an acceptable relative recovery (90-108%) for determining opium alkaloids in water and urine samples.


Alkaloids , Nanotubes, Carbon , Chromatography, High Pressure Liquid/methods , Nanotubes, Carbon/chemistry , Opium , Limit of Detection
5.
J Pharm Biomed Anal ; 236: 115755, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37778203

In this research, composited bimetallic organic framework-polyacrylonitrile (Ni-Co MOFs-PAN) was applied for thin-film solid phase microextraction (TF-SPME) of tricyclic antidepressant (TCA) drugs from biological samples. The separation and quantification of the analytes were accomplished by HPLC-UV. First, seeded nanofibers with organic ligands were electrospun on a sheet of foil. Then, with the uniform in-situ solvothermal growth of Ni-Co MOFs on the skeletal surface of nanofibers, the nanoparticles were successfully attached to the surfaces without effective bonds and produced a thin layer with a high flexibility, large active surface and abundant functional groups for adsorption. The characteristics of the produced nanocomposite were investigated by Fourier-transform infrared spectroscopy, field emission-scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and Brunauer-Emmett-Teller analysis. The stirring rate, pH, ionic strength, adsorption and desorption time along with type and volume of desorption solvents as influential factors on extraction efficiencies of the analytes, were optimized by one variable at a time method. Under optimized conditions, wide linear range for analytes in water and plasma matrices were obtained from 0.2 to 1000.0 µg L-1 and 1.0-1000.0 µg L-1, respectively, with R2 ≥ 0.9925. The limits of detection were in the range of 0.06-0.3 µg L-1 in different media. Good repeatability and reproducibility were attained within intra-day, inter-day and film-to-film RSDs% (n = 3) below 3.3 %, 3.9 % and 4.7 %, respectively. Since desirable relative recoveries were calculated between 91.4 % and 100.4 %. The method can be used for the successful extraction and measurement of amitriptyline and nortriptyline as its metabolite in different sampling time from urine and plasma matrices.


Nanofibers , Solid Phase Microextraction , Solid Phase Microextraction/methods , Amitriptyline , Nortriptyline , Nanofibers/chemistry , Reproducibility of Results , Skeleton , Limit of Detection
6.
J Sep Sci ; 46(22): e2300421, 2023 Nov.
Article En | MEDLINE | ID: mdl-37688348

In the present work, a novel solid-phase microextraction on a screw (MES) was employed to extract cationic dyes (malachite green, methylene blue, and rhodamine B) from food samples and fish breeding pool water. The sulfonated poly(styrene-co-divinylbenzene) was electrophoretically deposited on the surface of the grooves of a screw. Then the screw was placed inside a silicon tube as a holder to create a channel to run a test solution through it. The extracted dyes on the coated screw were eluted by a suitable eluent. High-performance liquid chromatography with an ultraviolet/visible detector was utilized for the separation and analysis of the analytes. The effective parameters of the analyte extraction efficiency were optimized. Under optimum conditions, the limits of detection were 0.15 µg/L, and calibration curves were linear in the range of 0.50-250.00 µg/L, with coefficients of determination > 0.989 for all studied dyes. The relative standard deviations of intra and inter-day (n = 3) were in the range of 2.8%-7.0% and 7.0%-9.5%, respectively. The MES was applied as a simple and repeatable method with acceptable relative recoveries (82.0%-103.0%) for the determination of cationic dyes in grape nectar, ice pop, jelly powder, and fish breeding pool water.

7.
J Chromatogr A ; 1706: 464227, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37506462

In this study, the packed sorbent solid phase (micro) extraction methods from manual to automated modes are reviewed. The automatic methods have several remarkable advantages such as high sample throughput, reproducibility, sensitivity, and extraction efficiency. These methods include solid-phase extraction, pipette tip micro-solid phase extraction, microextraction by packed sorbent, in-tip solid phase microextraction, in-tube solid phase microextraction, lab-on-a-chip, and lab-on-a-valve. The recent application of these methods for the extraction of organic and inorganic compounds are discussed. Also, the combination of novel technologies (3D printing and robotic platforms) with the (semi)automated methods are investigated as the future trend.


Environmental Pollutants , Reproducibility of Results , Solid Phase Extraction/methods , Solid Phase Microextraction/methods
8.
J Chromatogr A ; 1706: 464232, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37506463

The use of electrospinning has received much attention in the production of nanofiber webs due to its advantages such as flexibility and simplicity. The direct electrospinning of nanofibers in an aligned or twisted form and the production of nanofiber yarns can turn nanofibers into woven fabrics, which leads to an increase in the diversity of nanofiber applications and improves their end-use possibilities. In this work, a victorious nanofiber yarn spinning system was used with the help of a rotating funnel. Yarn formation was studied using a composited polyacrylonitrile (PAN)/MXene polymer solution ejected from two oppositely charged nozzles. Finaly their application for packed-in-tube solid-phase microextraction of ß-blocker drugs from biofluids was demonstrated. The separation and quantification of analytes were performed by HPLC-UV instrument. The 3D-yarn PAN/MXene sorbent exhibited high flexibility, porosity, sorbent loading, mechanical stability, and a long lifetime. The characterization of the final nanofiber was carried out utilizing Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray mapping, transmission electron microscope and X-ray diffraction analysis. Various parameters that affect the extraction efficiency, such as extraction time, pH, ionic strength and flow rate of sample solution, and type, volume and flow rate of eluent, were investigated and optimized. Under optimized conditions, the limits of detection were obtained in the range of 1.5-3.0 µg L-1. This method demonstrated appropriate linearity for ß-blockers in the range of 5.0-1000.0 µg L-1, with coefficients of determination greater than 0.990. The inter- and intra-assay precisions (RSDs, for n = 3) are in the range of 2.5-3.5%, and 4.5-5.2%, respectively. Finally, the validated method was put in an application for the analysis of atenolol, propranolol and betaxolol in human urine and saliva samples at different hours and acceptable relative recoveries were obtained in the range of 89.5% to 110.4%.


Nanofibers , Spiders , Humans , Animals , Solid Phase Microextraction/methods , Nanofibers/chemistry , Solid Phase Extraction/methods
9.
Mikrochim Acta ; 190(8): 289, 2023 Jul 13.
Article En | MEDLINE | ID: mdl-37439831

A smartphone-assisted determination of copper ions is introduced by using a down-scaled microfluidic mixer. The system was coupled with a micro-column packed with a periodic mesoporous organosilica (PMO) material for preconcentration of copper ions. Copper ions were reduced to Cu(I) on-chip to selectively form an orange-colored complex with neocuproine. A novel Android-based software was made to determine the color change of the adsorbent by analyzing red-green-blue (RGB) components of images from the packed PMO material. Four porous framework materials with high porosity and chemical stability were synthesized and compared for the extraction of the Cu-neocuproine complex. The main parameters influencing the complex extraction efficiency were optimized. The analytical performance of the method showed limit of detection and quantification of 0.2 µg L-1 and 0.5 µg L-1, respectively. The accuracy and precision of the method were determined as recovery > 92% and relative standard deviations < 5.2% at medium concentration level (n = 5). Due to accumulation of the retained analyte in a single point and elimination of the stripping step, the RGB-based method showed sensitivity and precision higher than inductively coupled plasma-atomic emission spectrometry (ICP-AES) for determination of copper ions. To investigate the applicability of the method, six different water samples were analyzed. The t-test on the data showed that the method has no significant difference when compared with ICP-AES determination.


Copper , Copper/analysis , Spectrum Analysis/methods , Ions
10.
J Pharm Biomed Anal ; 234: 115520, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37329650

The current study introduces microextraction by packed sorbent (MEPS) to extract three beta-blocker drugs (propranolol, atenolol, and betaxolol) from biological samples. The separation and detection of the drugs were performed by high performance liquid chromatography followed by UV detection. A green approach was applied for synthesizing chitosan@MOF-199 bio-composite, which was packed into the initial part of a metal spinal (22 gage). The effective parameters on the adsorption and desorption efficiencies, including sample solution pH, eluent flow rate, cycle numbers, type and volume of eluent solvent were evaluated and optimized. Under optimal conditions linear ranges (LRs = 5-600 µg L-1), limits of detection (LODs = 1.5-4.5 µg L-1), and relative standard deviations (RSDs% = 4.7 -5.3% with three replicates and concentration of 100 µg L-1) were obtained. Relative recoveries (RR%) for plasma (77-99%), saliva (81-108%), and urine (80-112%) samples were obtained. In this study, the drug release profile of propranolol in urine was evaluated. The results showed that the highest amount of propranolol is released 4 h after taking the drug. Based on the obtained results, this is an effective, fast, sensitive, reproducible, green, and user-friendly method for beta-blocker drug extraction in biological samples.


Chitosan , Humans , Saliva , Propranolol , Solid Phase Microextraction/methods , Chromatography, High Pressure Liquid/methods , Limit of Detection
11.
J Sep Sci ; 46(14): e2300132, 2023 Jul.
Article En | MEDLINE | ID: mdl-37232223

In this research, a green approach for dispersive solid phase microextraction was introduced for the extraction and determination of melamine in various matrices such as infant formula and hot water in a melamine bowl. In this way, a natural polar polymer called ß-cyclodextrin has been cross-linked with citric acid to create a water-insoluble adsorbent. The extraction was carried out by dispersion of the sorbent into the sample solution. The effective parameters on the extraction efficiency of the melamine, including ion strength, extraction time, sample volume, amount of absorbent, pH, type of desorption solvent, desorption time, and desorption solvent volume were optimized by one variable at a time approach. Under the optimal conditions, the method showed a good linear dynamic range for melamine in the range of 1-1000 µg/L with a coefficient of determination of 0.9985. The obtained limit of detection was 0.3 µg/L. The intra-day and inter-day relative standard deviations (n = 3) were 3.1% and 3.2% respectively. Lastly, this technique was applied to extract and determine the analyte in a melamine bowl and infant formula with acceptable and satisfactory results.

12.
Biosensors (Basel) ; 13(1)2023 Jan 14.
Article En | MEDLINE | ID: mdl-36671973

In the present study, on-chip electromembrane surrounded solid phase microextraction (EM-SPME) was employed in the determination of tricyclic antidepressants (TCAs), including amitriptyline, nortriptyline, imipramine, desipramine, maprotiline, and sertraline, from various biological fluids. In this regard, poly(3,4-ethylenedioxythiophene)-graphene oxide (PEDOT-GO) was electrodeposited on an SPME fiber as a conductive coating, then the fiber played the acceptor-electrode role during the extraction. Thus, the immigration of the analytes under the influence of an electric field and their absorption onto the fiber coating were accomplished simultaneously. Under the optimized conditions, the limits of detection for the target analytes were acquired in the range of 0.005-0.025 µg L-1 using gas chromatography-mass spectrometry. The linearity of the method was 0.010-500 µg L-1 for the imipramine and sertraline, 0.025-500 µg L-1 for the amitriptyline, nortriptyline, and desipramine, and 1.000-250 µg L-1 for the maprotiline (R2 ≥ 0.9984). Moreover, this method provided suitable precision and fiber-to-fiber reproducibility, with RSDs ≤ 8.4%. The applicability of the proposed setup was eventually investigated for extraction of the drugs from human bone marrow aspirate, urine, plasma, and well water samples, in which satisfactory relative recoveries, from 93-105%, were obtained.


Antidepressive Agents, Tricyclic , Nanocomposites , Humans , Antidepressive Agents, Tricyclic/analysis , Amitriptyline , Nortriptyline , Imipramine/analysis , Solid Phase Microextraction/methods , Desipramine/analysis , Sertraline , Maprotiline , Reproducibility of Results , Nanocomposites/analysis , Limit of Detection
13.
Talanta ; 254: 124168, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36549133

In this study, a new microfluidic-chip coupled with micro solid phase extraction (µ-SPE) and a RGB detection system was designed. The method was used for extraction and simultaneous determination of trace amounts of dyes with different acidic-basic properties. Erythrosine (Ery) and Crystal Violet (CV) were selected as acidic and basic model analytes, respectively. The first step of this method is based on the on-chip electromembrane extraction (CEME) of analytes from aqueous solution. The utilized microfluidic system is a single compartment that composed of three polymethyl metacrylate plates (with sandwiched structures) patterned with palm shaped helix channels. The device consisted one pair of platinum electrodes that were embedded in the acceptor phase channels in each side. The middle part was cut and used as the path of the sample. The extracted analytes by CEME were passed through the micro-packed column containing strong cation and anion exchanger sorbents respectively. Two adsorbents were separated by a polypropylene frit and sealed on each side by two polypropylene frites. Following dye adsorption on the sorbents, the colors that emerged were promptly evaluated using RGB colorimetry on a smartphone. Central composite design was used to analyze and optimize the effective parameters on extraction efficiency. The relative standard deviations (RSDs%) based on five replicate measurements were less than 7.8% for RGB and 8.6% for the spectrophotometry technique under ideal conditions. Image analysis using a smartphone yielded LOD values of 15.0 and 10.5 µg L-1 for Ery and CV, respectively. The CEME- µ-SPE -RGB approach produced findings that were equivalent to those obtained by spectrophotometry. Finally, the approach was used to accurately determine Ery and CV in water samples, yielding good relative recoveries (recovery ≥94.0).


Coloring Agents , Microfluidics , Smartphone , Polypropylenes , Solid Phase Extraction , Chromatography, High Pressure Liquid/methods
14.
Mikrochim Acta ; 189(11): 428, 2022 10 20.
Article En | MEDLINE | ID: mdl-36264436

The present research is an attempt to expand the recently reported microextraction on screw method. For this purpose, polyacrylonitrile/calcined ZnMgAl-LDH nanofiber was fabricated by the electrospinning technique on the surface of a screw. It was applied to the extraction of organophosphorus pesticides (OPP) from agricultural samples. The separation and determination of OPPs were carried out by gas chromatography-mass spectrometry. The characterization of the fabricated nanofiber was performed utilizing Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction instruments. Effective parameters on the extraction efficiency of the analytes including sample pH, ionic strength, sample flow rate and number of cycles, type, volume, and flow rate of desorption solvent were optimized by one-variable-at-a-time method. Under optimized conditions, the limits of detection were 0.03 and 0.07 µg L-1 for diazinon and chlorpyrifos, respectively. This method showed wide linearity in the range 0.10-1000 µg L-1 for diazinon and 0.25-1000 µg L-1 for chlorpyrifos with R2 > 0.996. The intra- and inter-day precisions (RSD%, n = 3) were ≤ 6.4% and ≤ 7.7%, respectively. Also, RSD% values less than 11.1% were obtained for screw-to-screw reproducibility. The applicability of the method for the extraction and determination of the analytes in complex agricultural environments such as cabbage, potato, tomato, cucumber, and beetroot was investigated. The results led to acceptable relative recoveries in the range 81.0-108.2%.


Chlorpyrifos , Nanofibers , Pesticides , Pesticides/analysis , Organophosphorus Compounds/analysis , Chlorpyrifos/analysis , Diazinon/analysis , Nanofibers/chemistry , Reproducibility of Results , Limit of Detection , Solvents/chemistry , Bone Screws
15.
Anal Chim Acta ; 1216: 339987, 2022 Jul 11.
Article En | MEDLINE | ID: mdl-35691677

Herein, the applicability of electromembrane extraction (EME), as an efficient and paper-compatible separation technique, was envisaged over customized microfluidic paper-based analytical devices (µPADs). The utility of EME was assessed on 2D planar and 3D origami structures using different types of electrodes including stainless steel and paper-based electrodes. The overall separation procedure was integrated to colorimetric detection demonstrated for copper ions as the model analyte. According to the obtained results, EME based on 3D design of µPADs could effectively be performed under low applied voltage. Using 3D architecture, the analyte could be quantified within the range of 40.0-1500.0 µg L-1 with limit of detection down to 20.0 µg L-1 using smart phone camera as signal read-out. The proposed platform showed remarkable compatibility with direct analysis from untreated real samples of human blood and spring water.


Microfluidic Analytical Techniques , Paper , Colorimetry/methods , Electrodes , Humans , Lab-On-A-Chip Devices , Microfluidics
16.
Anal Bioanal Chem ; 414(6): 2285-2296, 2022 Mar.
Article En | MEDLINE | ID: mdl-34985710

The current study presents a periodic mesoporous organosilica (PMO) with a high surface area and uniform-porosity material. The PMO materials were successfully synthesized and modified. The resultant material was characterized by different characterization techniques. The prepared PMO was immobilized on a stainless steel wire surface and was evaluated for headspace solid-phase microextraction of the ultra-trace amount of phthalate esters from saliva and polyethylene terephthalate containers which were in contact with hot and cold water. Separation and determination of the phthalate esters (PEs) were performed by the GC-FID and GC-MS instruments. The key parameters affecting the extraction efficiencies, including extraction temperature, extraction time, ionic strength, and desorption temperature and time, were investigated and optimized. Under optimum conditions, the repeatability for one fiber (n = 7) was 4.8-8.7%, and fiber-to-fiber reproducibility (n = 3) was 7.5-10.6% for the extracted compounds. The limits of detection of the developed method for the studied compounds were between 0.01 and 1 µg L-1. The results showed suitable coefficients of determination (R2 ≥ 0.99) for all of the analytes in the 0.05-300 µg L-1 calibration range. Acceptable recovery values of 91-107%, 82-110%, and 98-104% were obtained in saliva, polyethylene terephthalate containers hot water, and cold water, respectively.


Esters , Ethane , Phthalic Acids , Reproducibility of Results , Saliva , Solid Phase Microextraction/methods
17.
J Pharm Biomed Anal ; 209: 114487, 2022 Feb 05.
Article En | MEDLINE | ID: mdl-34864593

Antibiotic residues are being continuously recognized in the aquatic environment and in food. Though the concentration of antibiotic residues is typically low, adverse effects on the environment and human health have been observed. Hence, an efficient method to determine numerous antibiotic residues should be simple, inexpensive, selective, with high throughput and with low detection limits. Liquid-based extractions have been exceedingly used for clean-up and preconcentration of antibiotics prior to chromatographic analysis. In order to make methods more green and environmentally sustainable, conventional hazardous organic solvents can be replaced with green solvents. This review presents sampling strategies as well as comprehensive and up-to-date methods for chemical analysis of antibiotic residues in different sample matrices. Particularly, solvent-based sample preparation techniques using green solvents are discussed along with applications in antibiotic residue analysis.


Anti-Bacterial Agents , Chromatography, Gas , Humans , Solvents
18.
Anal Chim Acta ; 1188: 339183, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34794570

In this study, a customized microfluidic system was utilized for magnetic solid phase extraction of parabens. For this sake, magnetite nanoparticles were synthesized and coated with polyaniline to enable efficient extraction and magnetic separation of sorbents particles. The synthesized particles were extensively characterized in terms of morphology, composition, and magnetic properties. The utilized microfluidic platform consisted of a relatively long spiral microchannel fabricated through laser-cutting and multi-layered assembly. To obtain an efficient dispersion, simultaneous flows of sample solution and magnetic beads dispersion were introduced to the chip with the aid of two syringe pumps. In order to increase the stability of the dispersed nanoparticles in the aqueous solution, various chemical and instrumental parameters were investigated and optimized. In this context, exploitation of hydrophobic surfactants and surface charge manipulation of the particles was shown to be a highly promising approach for effective dispersion and maintenance of magnetic beads in long microfluidic channels. Under the optimized conditions, the calibration curves were linear in the range of 5.0-1000.0 µg L-1 for propyl paraben and 8.0-1000.0 µg L-1 for methyl- and ethyl paraben with coefficients of determination greater than 0.992. Relative standard deviations were assessed as intra- and inter-day values which were less than 7.2% and the preconcentration factors in water were 10-15 for 100 µg L-1 of parabens in water. Finally, the method was applied for the extraction of parabens from fruit juice, sunscreen, and urine samples which showed favorable accuracy and precision.


Parabens , Solid Phase Microextraction , Chromatography, High Pressure Liquid , Magnetic Phenomena , Microfluidics , Parabens/analysis , Solid Phase Extraction
19.
Talanta ; 235: 122724, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34517592

In this study, a sensitive solid phase microextraction (SPME) coating was developed based on two kinds of plugged and non-plugged bifunctional periodic mesoporous organosilicas (BFPMO) with ionic liquid and ethyl units. The extraction efficiency of all plugged and unplugged sorbents was investigated for the extraction of chlorophenols (CPs) in water and honey samples by emphasizing the effect of different physicochemical properties. The separation and determination of the CPs was performed by gas chromatography-mass spectrometry (GC-MS). The extraction results showed that plugged BFPMO coating exhibited outstanding enrichment ability for the extraction of CPs as model analytes with different polarities. This can be attributed to a valuable hydrophobic-hydrophilic balance in the mesochanels of the plugged BFPMO, which is the result of the combination of plug technology and bridged organic groups. Low limits of detection in the range of 5-70 ng L-1, wide linearity, and good reproducibility (RSD = 8.1-10.1 % for n = 6) under the optimized extraction conditions were achieved. Finally, the BFPMOs coated fiber was successfully used for determination of CPs in real water samples. The relative recoveries for the five CPs were in the range of 92.3-104.0 %, which proved the applicability of the method.


Chlorophenols , Water Pollutants, Chemical , Chlorophenols/analysis , Gas Chromatography-Mass Spectrometry , Reproducibility of Results , Solid Phase Microextraction , Water Pollutants, Chemical/analysis
20.
J Pharm Biomed Anal ; 204: 114256, 2021 Sep 10.
Article En | MEDLINE | ID: mdl-34280818

A nanocomposite of molecularly imprinted polypyrrole on copper oxide (MIP@CuO) was introduced as a new coating for in-tube solid-phase microextraction (IT-SPME). The method coupled with HPLC-UV was successfully applied for analysis of carbamazepine (anticonvulsant and bipolar disorder medication) in biological samples. First, in order to increase the surface area and stability of the coating, copper oxide (CuO) nanosheets were synthesized on the inner surface of a copper tube using a chemical method. Then, molecularly imprinted polypyrrole coating (using carbamazepine as a template) was deposited on CuO by a facile in-situ electrodeposition method. According to the results, The MIP@CuO coating shows long life time, enhanced extraction efficiency, and good clean-up, for pre-concentration and determination of carbamazepine in biological samples. The synthesized adsorbent also showed high selectivity to carbamazepine compared to other drugs with similar structure. Important factors affecting the extraction efficiency of the analyte in the in-tube SPME method, such as salt concentration, extraction and desorption times, flowrates of the sample solution, and eluent, were optimized. Under optimal conditions, the method showed good linearity for carbamazepine in the range of 0.05-500 µg L-1, 0.10-500 µg L-1, and 0.10-500 µg L-1 in water, urine, and plasma samples, respectively, with coefficients of determination better than 0.996. The limits of detection were in the range of 0.01-0.05 µg L-1 in different matrices. The intra- and inter-assay precisions (RSD%, n = 3) were in the range of 6.7-8.1 % and 7.1-9.5 %, respectively.


Nanocomposites , Solid Phase Microextraction , Carbamazepine , Copper , Polymers , Pyrroles
...