Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(22): 6529-6537, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38789104

RESUMEN

Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 µA µm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω µm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.

2.
BMC Microbiol ; 24(1): 112, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575862

RESUMEN

BACKGROUND: Postpartum women often experience stress urinary incontinence (SUI) and vaginal microbial dysbiosis, which seriously affect women's physical and mental health. Understanding the relationship between SUI and vaginal microbiota composition may help to prevent vaginal diseases, but research on the potential association between these conditions is limited. RESULTS: This study employed 16S rRNA gene sequencing to explore the association between SUI and vaginal dysbiosis. In terms of the vaginal microbiota, both species richness and evenness were significantly higher in the SUI group. Additionally, the results of NMDS and species composition indicated that there were differences in the composition of the vaginal microbiota between the two groups. Specifically, compared to postpartum women without SUI (Non-SUI), the relative abundance of bacteria associated with bacterial dysbiosis, such as Streptococcus, Prevotella, Dialister, and Veillonella, showed an increase, while the relative abundance of Lactobacillus decreased in SUI patients. Furthermore, the vaginal microbial co-occurrence network of SUI patients displayed higher connectivity, complexity, and clustering. CONCLUSION: The study highlights the role of Lactobacillus in maintaining vaginal microbial homeostasis. It found a correlation between SUI and vaginal microbiota, indicating an increased risk of vaginal dysbiosis. The findings could enhance our understanding of the relationship between SUI and vaginal dysbiosis in postpartum women, providing valuable insights for preventing bacterial vaginal diseases and improving women's health.


Asunto(s)
Microbiota , Incontinencia Urinaria de Esfuerzo , Enfermedades Vaginales , Femenino , Humanos , Incontinencia Urinaria de Esfuerzo/etiología , Disbiosis/microbiología , ARN Ribosómico 16S/genética , Vagina/microbiología , Microbiota/genética , Lactobacillus/genética , Bacterias/genética , Enfermedades Vaginales/complicaciones
3.
J Am Chem Soc ; 146(6): 3890-3899, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38294957

RESUMEN

Topological insulators offer significant potential to revolutionize diverse fields driven by nontrivial manifestations of their topological electronic band structures. However, the realization of superior integration between exotic topological states and superconductivity for practical applications remains a challenge, necessitating a profound understanding of intricate mechanisms. Here, we report experimental observations for a novel superconducting phase in the pressurized second-order topological insulator candidate Ta2Pd3Te5, and the high-pressure phase maintains its original ambient pressure lattice symmetry up to 45 GPa. Our in situ high-pressure synchrotron X-ray diffraction, electrical transport, infrared reflectance, and Raman spectroscopy measurements, in combination with rigorous theoretical calculations, provide compelling evidence for the association between the superconducting behavior and the densified phase. The electronic state change around 20 GPa was found to modify the topology of the Fermi surface directly, which synergistically fosters the emergence of robust superconductivity. In-depth comprehension of the fascinating properties exhibited by the compressed Ta2Pd3Te5 phase is achieved, highlighting the extraordinary potential of topological insulators for exploring and investigating high-performance electronic advanced devices under extreme conditions.

4.
Nat Commun ; 14(1): 7647, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996440

RESUMEN

The interplay between topology and interaction always plays an important role in condensed matter physics and induces many exotic quantum phases, while rare transition metal layered material (TMLM) has been proved to possess both. Here we report a TMLM Ta2Pd3Te5 has the two-dimensional second-order topology (also a quadrupole topological insulator) with correlated edge states - Luttinger liquid. It is ascribed to the unconventional nature of the mismatch between charge- and atomic- centers induced by a remarkable double-band inversion. This one-dimensional protected edge state preserves the Luttinger liquid behavior with robustness and universality in scale from micro- to macro- size, leading to a significant anisotropic electrical transport through two-dimensional sides of bulk materials. Moreover, the bulk gap can be modulated by the thickness, resulting in an extensive-range phase diagram for Luttinger liquid. These provide an attractive model to study the interaction and quantum phases in correlated topological systems.

5.
ACS Nano ; 17(19): 18905-18913, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37767802

RESUMEN

Topological properties in quantum materials are often governed by symmetry and tuned by crystal structure and external fields, and hence, symmetry-sensitive nonlinear optical measurements in a magnetic field are a valuable probe. Here, we report nonlinear magneto-optical second harmonic generation (SHG) studies of nonmagnetic topological materials including bilayer WTe2, monolayer WSe2, and bulk TaAs. The polarization-resolved patterns of optical SHG under a magnetic field show nonlinear Kerr rotation in these time-reversal symmetric materials. For materials with 3-fold rotational symmetric lattice structure, the SHG polarization pattern rotates just slightly in a magnetic field, whereas in those with mirror or 2-fold rotational symmetry, the SHG polarization pattern rotates greatly and distorts. These different magneto-SHG characters can be understood by considering the superposition of the magnetic field-induced time-noninvariant nonlinear optical tensor and the crystal-structure-based time-invariant counterpart. The situation is further clarified by scrutinizing the Faraday rotation, whose subtle interplay with crystal symmetry accounts for the diverse behavior of the extrinsic nonlinear Kerr rotation in different materials. Our work illustrates the application of magneto-SHG techniques to directly probe nontrivial topological properties, and underlines the importance of minimizing extrinsic nonlinear Kerr rotation in polarization-resolved magneto-optical studies.

6.
J Phys Condens Matter ; 34(45)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36055225

RESUMEN

Topologically nontrivial electronic states are recently found in a family of noncentrosymmetric transition metal pnictidesTRuX(T=Zr, Hf;X=P, As), presenting a unique platform for superconductivity to interplay with topological electronic states and asymmetric spin-orbit coupling. Here, we investigate the superconducting order parameter of HfRuP and ZrRuAs by measuring the magnetic penetration depth changeΔλ(T)using a method based on the tunnel-diode oscillator. Both compounds show clear exponential temperature dependence inΔλ(T)at low temperatures, suggesting fully-gapped superconductivity. Moreover, the superfluid densities in both HfRuP and ZrRuAs can be reasonably described by ans-wave superconducting model.

7.
J Phys Condens Matter ; 34(16)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35073531

RESUMEN

Single crystals of PrFe2Ga8were successfully grown by using Ga self-flux. PrFe2Ga8crystallizes in the CaCo2Al8-type orthorhombic structure with the space groupPbam(no. 55). By combining the results from the magnetic-susceptibility, specific-heat, and resistivity measurements, we show that PrFe2Ga8exhibits a magnetic order at 14 K. ForH//c, the antiferromagnetic order can be suppressed by magnetic fields. However, the magnetic order is robust against magnetic fields forH⊥c. Our results provide basic physical properties of PrFe2Ga8and will help to further understand the magnetism in this system.

8.
Mater Horiz ; 9(2): 748-755, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34881773

RESUMEN

Superhard semiconductors have been long sought after for electronic device applications enduring extreme conditions, such as astronautics, due to their intrinsic toughness, high thermal and chemical stability. Here, we report the superhard p-type semiconductor Al2.69B50 single crystal with the determined Vickers hardness of ∼40.5 GPa under the load of 0.49 N, which is one of the hardest semiconductor compounds that have been ever found. With the direct band gap of 2.3 eV, Al2.69B50 exhibits excellent optical transmittance (>90%), covering the visible range from 459 nm to 760 nm and part of the infrared range, and also shows the high intensity of the photon emission in the visible light. Al2.69B50 is very stable, thermally and chemically, with an ultra-low density of ∼2.52 g cm-3, allowing for further extension of its applications. Such an assembly of various excellent properties within one material has great implication for high power electronic design and applications.

9.
Nat Commun ; 12(1): 5453, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526513

RESUMEN

Strongly correlated oxides with a broken symmetry could exhibit various phase transitions, such as superconductivity, magnetism and ferroelectricity. Construction of superlattices using these materials is effective to design crystal symmetries at atomic scale for emergent orderings and phases. Here, antiferromagnetic Ruddlesden-Popper Sr2IrO4 and perovskite paraelectric (ferroelectric) SrTiO3 (BaTiO3) are selected to epitaxially fabricate superlattices for symmetry engineering. An emergent magnetoelectric phase transition is achieved in Sr2IrO4/SrTiO3 superlattices with artificially designed ferroelectricity, where an observable interfacial Dzyaloshinskii-Moriya interaction driven by non-equivalent interface is considered as the microscopic origin. By further increasing the polarization namely interfacial Dzyaloshinskii-Moriya interaction via replacing SrTiO3 with BaTiO3, the transition temperature can be enhanced from 46 K to 203 K, accompanying a pronounced magnetoelectric coefficient of ~495 mV/cm·Oe. This interfacial engineering of Dzyaloshinskii-Moriya interaction provides a strategy to design quantum phases and orderings in correlated electron systems.

10.
Nat Commun ; 12(1): 2052, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824343

RESUMEN

Topological crystalline insulators (TCIs) are insulating electronic states with nontrivial topology protected by crystalline symmetries. Recently, theory has proposed new classes of TCIs protected by rotation symmetries [Formula: see text], which have surface rotation anomaly evading the fermion doubling theorem, i.e., n instead of 2n Dirac cones on the surface preserving the rotation symmetry. Here, we report the first realization of the [Formula: see text] rotation anomaly in a binary compound SrPb. Our first-principles calculations reveal two massless Dirac fermions protected by the combination of time-reversal symmetry [Formula: see text] and [Formula: see text] on the (010) surface. Using angle-resolved photoemission spectroscopy, we identify two Dirac surface states inside the bulk band gap of SrPb, confirming the [Formula: see text] rotation anomaly in the new classes of TCIs. The findings enrich the classification of topological phases, which pave the way for exploring exotic behavior of the new classes of TCIs.

11.
Nat Commun ; 10(1): 5736, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844067

RESUMEN

Photosensing and energy harvesting based on exotic properties of quantum materials and new operation principles have great potential to break the fundamental performance limit of conventional photodetectors and solar cells. Weyl semimetals have demonstrated novel optoelectronic properties that promise potential applications in photodetection and energy harvesting arising from their gapless linear dispersion and Berry field enhanced nonlinear optical effect at the vicinity of Weyl nodes. In this work, we demonstrate robust photocurrent generation at the edge of Td-WTe2, a type-II Weyl semimetal, due to crystalline-symmetry breaking along certain crystal fracture directions and possibly enhanced by robust fermi-arc type surface states. This edge response is highly generic and arises universally in a wide class of quantum materials with similar crystal symmetries. The robust and generic edge current response provides a charge separation mechanism for photosensing and energy harvesting over broad wavelength range.

12.
ACS Nano ; 13(8): 9571-9577, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31365228

RESUMEN

Topological materials harbor topologically protected boundary states. Recently, TaIrTe4, a ternary transition-metal dichalcogenide, was identified as a type-II Weyl semimetal with the minimal nonzero number of Weyl points allowed for a time-reversal invariant Weyl semimetal. Monolayer TaIrTe4 was proposed to host topological edge states, which, however, lacks of experimental evidence. Here, we report on the topological edge states localized at the monolayer step edges of the type-II Weyl semimetal TaIrTe4 using scanning tunneling microscopy. One-dimensional electronic states that show substantial robustness against the edge irregularity are observed at the step edges. Theoretical calculations substantiate the topologically nontrivial nature of the edge states and their robustness against the edge termination and layer stacking. The observation of topological edge states at the step edges of TaIrTe4 surfaces suggests that monolayer TaIrTe4 is a two-dimensional topological insulator, providing TaIrTe4 as a promising material for topological physics and devices.

13.
Nano Lett ; 19(6): 3969-3975, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31082263

RESUMEN

Since the discovery of extremely large nonsaturating magnetoresistance (MR) in WTe2, much effort has been devoted to understanding the underlying mechanism, which is still under debate. Here, we explicitly identify the dominant physical origin of the large nonsaturating MR through in situ tuning of the magneto-transport properties in thin WTe2 film. With an electrostatic doping approach, we observed a nonmonotonic gate dependence of the MR. The MR reaches a maximum (10600%) in thin WTe2 film at certain gate voltage where electron and hole concentrations are balanced, indicating that the charge compensation is the dominant mechanism of the observed large MR. Besides, we show that the temperature-dependent magnetoresistance exhibits similar tendency with the carrier mobility when the charge compensation is retained, revealing that distinct scattering mechanisms may be at play for the temperature dependence of magneto-transport properties. Our work would be helpful for understanding mechanism of the large MR in other nonmagnetic materials and offers an avenue for achieving large MR in the nonmagnetic materials with electron-hole pockets.

14.
J Phys Condens Matter ; 31(27): 275702, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-30947161

RESUMEN

ZrCo2Sn is a potential candidate as a Weyl semimetal with a ferromagnetic ground state, and Nb-doping is expected to shift the Weyl points to the vicinity of Fermi level. We successfully synthesized a series of Zr1-x Nb x Co2Sn single crystals with various concentrations of Nb (x = 0, 0.1, 0.2, 0.275, 0.4, 0.5). All samples have a spinel structure and the lattice constant decrease as the Nb doping level increases. The magnetization and transport measurements suggest that the ferromagnetic ordering temperature can be strongly modified by the Nb doping. When x increases, the Curie temperature decreases significantly, accompanied by a change from metal-like to semiconductor-like behavior. There is a crossover for positive to negative MR at a temperature between 30 K to 50 K. In constant, the magnitude of the anomalous Hall resistance increases monotonously with decreasing temperature.

15.
Sci Bull (Beijing) ; 64(17): 1215-1221, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659601

RESUMEN

Connate topological superconductor (TSC) combines topological surface states with nodeless superconductivity in a single material, achieving effective p-wave pairing without interface complication. By combining angle-resolved photoemission spectroscopy and in-situ molecular beam epitaxy, we studied the momentum-resolved superconductivity in ß-Bi2Pd film. We found that the superconducting gap of topological surface state (ΔTSS ∼ 3.8 meV) is anomalously enhanced from its bulk value (Δb ∼ 0.8 meV). The ratio of 2ΔTSS/kBTc ∼ 16.3, is substantially larger than the BCS value. By measuring ß-Bi2Pd bulk single crystal as a comparison, we clearly observed the upward-shift of chemical potential in the film. In addition, a concomitant increasing of surface weight on the topological surface state was revealed by our first principle calculation, suggesting that the Dirac-fermion-mediated parity mixing may cause this anomalous superconducting enhancement. Our results establish ß-Bi2Pd film as a unique case of connate TSCs with a highly enhanced topological superconducting gap, which may stabilize Majorana zero modes at a higher temperature.

16.
Micromachines (Basel) ; 9(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30424391

RESUMEN

A WiFi-received signal strength index (RSSI) fingerprinting-based indoor positioning system (WiFi-RSSI IPS) is widely studied due to advantages of low cost and high accuracy, especially in a complex indoor environment where performance of the ranging method is limited. The key drawback that limits the large-scale deployment of WiFi-RSSI IPS is time-consuming offline site surveys. To solve this problem, we developed a method using multi-mounted devices to construct a lightweight site-survey radio map (LSS-RM) for WiFi positioning. A smartphone was mounted on the foot (Phone-F) and another on the waist (Phone-W) to scan WiFi-RSSI and simultaneously sample microelectromechanical system inertial measurement-unit (MEMS-IMU) readings, including triaxial accelerometer, gyroscope, and magnetometer measurements. The offline site-survey phase in LSS-RM is a client⁻server model of a data collection and preprocessing process, and a post calibration process. Reference-point (RP) coordinates were estimated using the pedestrian dead-reckoning algorithm. The heading was calculated with a corner detected by Phone-W and the preassigned site-survey trajectory. Step number and stride length were estimated using Phone-F based on the stance-phase detection algorithm. Finally, the WiFi-RSSI radio map was constructed with the RP coordinates and timestamps of each stance phase. Experimental results show that our LSS-RM method can reduce the time consumption of constructing a WiFi-RSSI radio map from 54 min to 7.6 min compared with the manual site-survey method. The average positioning error was below 2.5 m with three rounds along the preassigned site-survey trajectory. LSS-RM aims to reduce offline site-survey time consumption, which would cut down on manpower. It can be used in the large-scale implementation of WiFi-RSSI IPS, such as shopping malls, hospitals, and parking lots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...