Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 186: 108654, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621322

RESUMEN

Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.


Asunto(s)
Eutrofización , Sedimentos Geológicos , Lagos , Lagos/microbiología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/genética , Bacterias/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Antibacterianos/análisis , Antibacterianos/farmacología , Genes Bacterianos , China , Farmacorresistencia Bacteriana/genética
2.
Sci Total Environ ; 726: 138606, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32481226

RESUMEN

Subtropical lakes are increasingly subject to cyanobacterial blooms resulting from climate change and anthropogenic activities, but the lack of long-term historical data limits understanding of how climate changes have affected cyanobacterial growth in deep subtropical lakes. Using high-resolution DNA data derived from a sediment core from a deep lake in southwestern China, together with analysis of other sedimentary hydroclimatic proxies, we investigated cyanobacterial biomass and microbial biodiversity in relation to climate changes during the last millennium. Our results show that both cyanobacterial abundance and microbial biodiversity were higher during warmer periods, including the Medieval Warm Period (930-1350 CE) and the Current Warm Period (1900 CE-present), but lower during cold periods, including the Little Ice Age (1400-1850 CE). The significant increases in cyanobacterial abundance and microbial biodiversity during warmer intervals are probably because warm climate not only favors cyanobacterial growth but also concentrates lake water nutrients through water budgets between evaporation and precipitation. Furthermore, because rising temperatures result in greater vertical stratification in deep lakes, cyanobacteria may have exploited these stratified conditions and accumulated in dense surface blooms. We anticipate that under anthropogenic warming conditions, cyanobacterial biomass may continue to increase in subtropical deep lakes.


Asunto(s)
Cianobacterias , Lagos , Biomasa , China , Cambio Climático , Eutrofización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...