Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(49): 24729-24737, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31740605

RESUMEN

The order Coleoptera (beetles) is arguably the most speciose group of animals, but the evolutionary history of beetles, including the impacts of plant feeding (herbivory) on beetle diversification, remain poorly understood. We inferred the phylogeny of beetles using 4,818 genes for 146 species, estimated timing and rates of beetle diversification using 89 genes for 521 species representing all major lineages and traced the evolution of beetle genes enabling symbiont-independent digestion of lignocellulose using 154 genomes or transcriptomes. Phylogenomic analyses of these uniquely comprehensive datasets resolved previously controversial beetle relationships, dated the origin of Coleoptera to the Carboniferous, and supported the codiversification of beetles and angiosperms. Moreover, plant cell wall-degrading enzymes (PCWDEs) obtained from bacteria and fungi via horizontal gene transfers may have been key to the Mesozoic diversification of herbivorous beetles-remarkably, both major independent origins of specialized herbivory in beetles coincide with the first appearances of an arsenal of PCWDEs encoded in their genomes. Furthermore, corresponding (Jurassic) diversification rate increases suggest that these novel genes triggered adaptive radiations that resulted in nearly half of all living beetle species. We propose that PCWDEs enabled efficient digestion of plant tissues, including lignocellulose in cell walls, facilitating the evolution of uniquely specialized plant-feeding habits, such as leaf mining and stem and wood boring. Beetle diversity thus appears to have resulted from multiple factors, including low extinction rates over a long evolutionary history, codiversification with angiosperms, and adaptive radiations of specialized herbivorous beetles following convergent horizontal transfers of microbial genes encoding PCWDEs.


Asunto(s)
Biodiversidad , Evolución Biológica , Escarabajos/genética , Transferencia de Gen Horizontal , Genoma de los Insectos , Animales , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Celulasas/genética , Celulasas/metabolismo , Escarabajos/enzimología , Escarabajos/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/enzimología , Hongos/genética , Herbivoria/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Lignina/química , Lignina/metabolismo , Filogenia , Plantas/química , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo
2.
BMC Evol Biol ; 18(1): 33, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29548278

RESUMEN

BACKGROUND: Gyrinidae are a charismatic group of highly specialized beetles, adapted for a unique lifestyle of swimming on the water surface. They prey on drowning insects and other small arthropods caught in the surface film. Studies based on morphological and molecular data suggest that gyrinids were the first branch splitting off in Adephaga, the second largest suborder of beetles. Despite its basal position within this lineage and a very peculiar morphology, earliest Gyrinidae were recorded not earlier than from the Upper Triassic. RESULTS: Tunguskagyrus. with the single species Tunguskagyrus planus is described from Late Permian deposits of the Anakit area in Middle Siberia. The genus is assigned to the stemgroup of Gyrinidae, thus shifting back the minimum age of this taxon considerably: Tunguskagyrus demonstrates 250 million years of evolutionary stability for a very specialized lifestyle, with a number of key apomorphies characteristic for these epineuston predators and scavengers, but also with some preserved ancestral features not found in extant members of the family. It also implies that major splitting events in this suborder and in crown group Coleoptera had already occurred in the Permian. Gyrinidae and especially aquatic groups of Dytiscoidea flourished in the Mesozoic (for example Coptoclavidae and Dytiscidae) and most survive until the present day, despite the dramatic "Great Dying" - Permian-Triassic mass extinction, which took place shortly (in geological terms) after the time when Tunguskagyrus lived. CONCLUSIONS: Tunguskagyrus confirms a Permian origin of Adephaga, which was recently suggested by phylogenetic "tip-dating" analysis including both fossil and Recent gyrinids. This also confirms that main splitting events leading to the "modern" lineages of beetles took place before the Permian-Triassic mass extinction. Tunguskagyrus shows that Gyrinidae became adapted to swimming on the water surface long before Mesozoic invasions of the aquatic environment took place (Dytiscoidea). The Permian origin of Gyrinidae is consistent with a placement of this highly derived family as the sister group of all remaining adephagan groups, as suggested based on morphological features of larvae and adults and recent analyses of molecular data.


Asunto(s)
Evolución Biológica , Escarabajos/fisiología , Extinción Biológica , Fósiles , Animales , Escarabajos/anatomía & histología , Paleontología , Filogenia , Siberia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...