Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1436382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144227

RESUMEN

The quality of fermented plant leaves is closely related to the interleaf microorganisms and their metabolic activities. In this experiment, a multi-omics analysis was applied to investigate the link between the structural composition of the phyllosphere microbial community and the main metabolites during the fermentation process. It was found that the whole fermentation process of cigar leaves could be divided into three stages, in which the Mid-Stage was the most active period of microbial metabolic activities and occupied an important position. Staphylococcus, Brevundimonas, Acinetobacter, Brevibacterium, Pantoea, Aspergillus, Wallemia, Meyerozyma, Sampaiozyma, Adosporium and Trichomonascus played important roles in this fermentation. Staphylococcus and Aspergillus are the microorganisms that play an important role in the fermentation process. Staphylococcus were strongly correlated with lipids and amino acids, despite its low abundance, Stenotrophomonas is importantly associated with terpene and plays a significant role throughout the process. It is worth noting that Wapper exists more characteristic fungal genera than Filler and is more rapid in fermentation progress, which implies that the details of the fermentation process should be adjusted appropriately to ensure stable quality when faced with plant leaves of different genotypes. This experiment explored the relationship between metabolites and microorganisms, and provided a theoretical basis for further optimizing the fermentation process of plant leaves and developing techniques to improve product quality. Biomarker is mostly present in the pre-fermentation phase, but the mid-fermentation phase is the most important part of the process.

2.
Phytomedicine ; 132: 155658, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981149

RESUMEN

BACKGROUND: Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE: We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS: Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS: Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION: In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.


Asunto(s)
Ampelopsis , Hepatopatías Alcohólicas , Ratones Endogámicos C57BL , FN-kappa B , Farmacología en Red , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/prevención & control , FN-kappa B/metabolismo , Ampelopsis/química , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Extractos Vegetales/farmacología , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/química , Etanol , Citocinas/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928476

RESUMEN

Salt stress seriously affects crop growth, leading to a decline in crop quality and yield. Application of exogenous substances to improve the salt tolerance of crops and promote their growth under salt stress has become a widespread and effective means. Eugenol is a small molecule of plant origin with medicinal properties such as antibacterial, antiviral, and antioxidant properties. In this study, tobacco seedlings were placed in Hoagland's solution containing NaCl in the presence or absence of eugenol, and physiological indices related to stress tolerance were measured along with transcriptome sequencing. The results showed that eugenol improved the growth of tobacco seedlings under salt stress. It promoted carbon and nitrogen metabolism, increased the activities of nitrate reductase (NR), sucrose synthase (SS), and glutamine synthetase (GS) by 31.03, 5.80, and 51.06%. It also activated the enzymatic and non-enzymatic antioxidant systems, reduced the accumulation of reactive oxygen species in the tobacco seedlings, and increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) by 24.38%, 18.22%, 21.60%, and 28.8%, respectively. The content of glutathione (GSH) was increased by 29.49%, and the content of superoxide anion (O2-) and malondialdehyde (MDA) were reduced by 29.83 and 33.86%, respectively. Promoted osmoregulation, the content of Na+ decreased by 34.34, K+ increased by 41.25%, and starch and soluble sugar increased by 7.72% and 25.42%, respectively. It coordinated hormone signaling in seedlings; the content of abscisic acid (ABA) and gibberellic acid 3 (GA3) increased by 51.93% and 266.28%, respectively. The transcriptome data indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, the MAPK signaling pathway, and phytohormone signal transduction pathways. The results of this study revealed the novel role of eugenol in regulating plant resistance and provided a reference for the use of exogenous substances to alleviate salt stress.


Asunto(s)
Antioxidantes , Eugenol , Regulación de la Expresión Génica de las Plantas , Nicotiana , Reguladores del Crecimiento de las Plantas , Estrés Salino , Plantones , Transducción de Señal , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Nicotiana/genética , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Antioxidantes/metabolismo , Transducción de Señal/efectos de los fármacos , Eugenol/farmacología , Eugenol/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Tolerancia a la Sal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
4.
Cell Death Dis ; 14(3): 174, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859530

RESUMEN

Lupus nephritis (LN) is a type of immune-complex nephritis caused by systemic lupus erythematosus and is a major contributor to mortality and morbidity. Honokiol (HNK) has been found to have a therapeutic effect on LN, but its action mechanism remains unclear. In this study, we first demonstrated that HNK attenuates kidney injury in MRL/lpr mice. Results from RNA sequencing combined with ingenuity pathway analysis suggested that HNK plays an anti-LN role through inhibition of the NLRP3 inflammasome and IL33. GEO chip data, single-cell data, and clinical samples from LN patients demonstrated that the pyroptosis and IL-33/ST2 pathways are abnormally activated during the stage of LN. In vivo, similar to the results of the AAV-mediated NLRP3 shRNA MRL/lpr model, HNK downregulated serum and renal IL-33 levels, and suppressed NLRP3 inflammasome and the IL-33/ST2 axis in the kidney. In vitro, co-culturing NLRP3-overexpressing or IL-33 knocked-down rat renal macrophages with NRK-52E cells confirmed that NLRP3 activation in resident macrophages directly upregulates IL-33, which in turn mediates the IL-33/ST2/NF-κB pathway to promote the inflammatory response of renal tubular epithelial cells. Furthermore, a molecular docking model and surface plasmon resonance analysis were utilized to demonstrate a direct interaction between HNK and NLRP3. In conclusion, this study provides a novel anti-LN treatment strategy in which HNK plays a preventive and therapeutic role against LN by suppressing the abnormal crosstalk between renal resident macrophages and renal tubular epithelial cells by inhibiting the activation of the NLRP3/IL-33/ST2 axis.


Asunto(s)
Nefritis Lúpica , Ratones , Animales , Ratas , Ratones Endogámicos MRL lpr , Interleucina-33 , Proteína 1 Similar al Receptor de Interleucina-1 , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamasomas , Simulación del Acoplamiento Molecular , Riñón , Células Epiteliales , Macrófagos , Receptores de Interleucina-1
5.
Dalton Trans ; 51(8): 3188-3197, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35113100

RESUMEN

Ku70 protein and topoisomerase IIα (Topo IIα) are promising targets of anticancer drugs, which play critical roles in DNA repair and replication processes. Three platinum(II) complexes, [PtCl(NH3)2(9-(pyridin-2-ylmethyl)-9H-carbazole)]NO3 (OPPC), [PtCl(NH3)2(9-(pyridin-3-ylmethyl)-9H-carbazole)]NO3 (MPPC), and [PtCl(NH3)2(9-(pyridin-4-ylmethyl)-9H-carbazole)]NO3 (PPPC), were designed as inhibitors of Ku70 and Topo IIα. Their antitumor activity and inhibitory efficacy on Ku70 and Topo IIα were investigated on cellular and molecular levels. OPPC exhibited high antiproliferative activity against various cancer cell lines, with acute toxicity to mice being lower than that of cisplatin. Moreover, OPPC could enter cancer cells effectively and cause DNA damage, which was evidenced by the enhanced expression of γ-H2AX, Chk1/2 phosphorylation, p53 and cell cycle arrest. OPPC also downregulated the DNA damage repair protein Ku70 and inhibited the formation of Ku70 foci-the central points or loci of Ku70, which would suppress DNA repair and induce a nonhomologous end joining response in cancer cells. More importantly, these complexes showed inhibition towards Topo IIα; in particular, OPPC was more effective than MPPC and PPPC. In the Topo IIα knockdown cells, Ku70 and Topo IIα were directly associated with the DNA damage and apoptotic response. The molecular docking provided detailed structural insights into the interactions of the complexes with Topo IIα. This study demonstrates that the cytotoxicity of these complexes is associated with the DNA damage and repair pathways mediated by Ku70 and Topo IIα; OPPC is an effective inhibitor of Ku70 and Topo IIα and restrains cancer cells via a mechanism utterly distinct from that of cisplatin.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Autoantígeno Ku/antagonistas & inhibidores , Compuestos de Platino/síntesis química , Compuestos de Platino/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo II , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estructura Molecular , Compuestos de Platino/química
6.
Rev Sci Instrum ; 88(12): 123905, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29289237

RESUMEN

A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA