Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
J Colloid Interface Sci ; 660: 692-702, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38271805

Tetracycline (TC) antibiotics have been widely used over the past decades, and their massive discharge led to serious water pollution. Photo-Fenton process has gained ever-increasing attention for its excellent oxidizing ability and friendly solar energy utilization ability in TC polluted water treatment. This work introduced coordinative Fe into oxygen-enriched graphite carbon nitride (OCN) to form FeOCN composites for efficient photo-Fenton process. Hemin was chosen as the source to provide the source of coordinative Fe-Nx groups. The degradation efficiency of TC reached 82.1 % within 40 min of irradiation, and remained 76.9 % after five runs of reaction. The degradation intermediates of TC were detected and the possible degradation pathways were gained. It was found that h+, OH, and O2- played major roles in TC degradation. Notably, the photo-Fenton performance of FeOCN was stable in highly saline water or strong acid/base environment (pH 3.0-9.0). Besides, H2O2 can be generated in-situ in this photo-Fenton process, which is favorable for practical application. It can be anticipated that the coordinative FeOCN composites will promote the application of photo-Fenton oxidation process in TC polluted water treatment.

2.
Small ; 20(7): e2306621, 2024 Feb.
Article En | MEDLINE | ID: mdl-37814375

Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.

3.
Chemosphere ; 344: 140395, 2023 Dec.
Article En | MEDLINE | ID: mdl-37820881

Photocatalysis is currently a hot research field, which provides promising processes to produce green energy sources and other useful products, thus eventually benefiting carbon emission reduction and leading to a low-carbon future. The development and application of stable and efficient photocatalytic materials is one of the main technical bottlenecks in the field of photocatalysis. Perovskite has excellent performance in the fields of photocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), organic synthesis and pollutant degradation due to its unique structure, flexibility and resulting excellent photoelectric and catalytic properties. The stability problems caused by perovskite's susceptibility to environmental influences hinder its further application in the field of photocatalysis. Therefore, this paper innovatively summarizes and analyzes the existing methods and strategies to improve the stability of perovskite in the field of photocatalysis. Specifically, (i) component engineering, (ii) morphological control, (iii) hybridization and encapsulation are thought to improve the stability of perovskites while improving photocatalytic efficiency. Finally, the challenges and prospects of perovskite photocatalysts are discussed, which provides constructive thinking for the potential application of perovskite photocatalysts.


Environmental Pollutants , Iodine , Calcium Compounds , Catalysis , Energy-Generating Resources
4.
J Hazard Mater ; 460: 132363, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37633017

As a rising branch of advanced oxidation processes, persulfate activation has attracted growing attention. Unlike catalysts that have been widely studied, the selection of persulfate is previously overlooked. In this study, the affecting factors of persulfates were studied. The effect of target pollutant properties on superior persulfate species (the species with a higher degradation efficiency) was investigated by multiwalled carbon nanotube (MWCNT)/persulfate catalytic systems. Innovatively, the EHOMO (or vertical ionization potential (VIP)) value of the target pollutant was proposed to be an index to judge the superior persulfate species, and the threshold is VIP= 6.397-6.674 eV, EHOMO= -8.035∼- 7.810 eV, respectively. To be specific, when the VIP of phenolic compounds is higher (or EHOMO of phenolic compounds is lower) than the threshold, the catalytic performance of peroxymonosulfate would be higher than that of peroxydisulfate. Moreover, the effects of coexisting cations on peroxydisulfate superior species were further investigated. It was illustrated that the hydrated cation radius of coexisting cations would influence the pollutant degradation efficiency under some circumstances. This study provides a new approach to improve the cost of persulfate activation systems and promotes the underlying downstream application of persulfate activation systems.

5.
Water Res ; 234: 119808, 2023 May 01.
Article En | MEDLINE | ID: mdl-36889085

Proper wastewater treatment has always been the focus of human society, and many researchers have been working to find efficient and stable wastewater treatment technologies. Persulfate-based advanced oxidation processes (PS-AOPs) mainly rely on persulfate activation to form reactive species for pollutants degradation and are considered to be one of the most effective wastewater treatment technologies. Recently, metal-carbon hybrid materials have been diffusely used for PS activation because of their high stability, abundant active sites, and easy applicability. Metal-carbon hybrid materials can successfully overcome the shortcomings of onefold metal catalysts and carbon catalysts by combing the complementary advantages of the two components. This article reviews recent studies about metal-carbon hybrid materials-mediated PS-AOPs for wastewater decontamination. The interactions of metal and carbon materials, as well as the active sites of metal-carbon hybrid materials, are introduced first. Then, the application and mechanism of metal-carbon hybrid materials-mediated PS activation are presented in detail. Lastly, the modulation methods of metal-carbon hybrid materials and their tunable reaction pathways were discussed. The prospect of future development directions and challenges is proposed to facilitate metal-carbon hybrid materials-mediated PS-AOPs to take a step further for practical application.


Carbon , Water Pollutants, Chemical , Humans , Wastewater , Oxidation-Reduction , Metals , Water Pollutants, Chemical/chemistry
6.
Sci Total Environ ; 870: 162024, 2023 Apr 20.
Article En | MEDLINE | ID: mdl-36740069

Due to the synergistic effects of biochar and compost/composting, the combined application of biochar and compost (biochar-compost) has been recognized as a highly promising and efficient method of soil improvement. However, the willingness to apply biochar-compost for soil improvement is still low compared to the use of biochar or compost alone. This paper collects data on the application of biochar-compost in several problem soils that are well-known and extensively investigated by agronomists and scientists, and summarizes the effects of biochar-compost application in common problem soils. These typical problem soils are classified based on three different characteristics: climatic zones, abiotic stresses, and contaminants. The improvement effect of biochar-compost in different soils is assessed and directions for further research and suggestions for application are made. Generally, biochar-compost mitigates the high mineralization rate of soil organic matter, phosphorus deficiency and aluminum toxicity, and significantly improves crop yields in most tropical soils. Biochar-compost can help to achieve long-term sustainable management of temperate agricultural soils by sequestering carbon and improving soil physicochemical properties. Biochar-compost has shown positive performance in the remediation of both dry and saline soils by reducing the threat of soil water scarcity or high salinity and improving the consequent deterioration of soil conditions. By combining different mechanisms of biochar and compost to immobilize or remove contaminants, biochar-compost tends to perform better than biochar or compost alone in soils contaminated with heavy metals (HMs) or organic pollutants (OPs). This review aims to improve the practicality and acceptability of biochar-compost and to promote its application in soil. Additionally, the prospects, challenges and future directions for the application of biochar-compost in problem soil improvement were foreseen.


Composting , Metals, Heavy , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal/chemistry
7.
Sci Total Environ ; 864: 161062, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36565867

Biochar has been frequently used as a persulfate (PS) activator due to its attractive properties, but dissolved organic matter (DOM) derived from the non­carbonized part of biochar has received less attention, not to mention its specific role and impact in biochar/PS systems. In this study, wheat straw, municipal sludge, and swine bone were selected as the representative feed stocks of biochar. Subsequently, these three types of biochar were adopted to explore the roles of DOM in biochar/PS systems. Although the composition and amount of DOM derived from different biochar were discrepant, they exhibited similar effect in biochar/PS systems. To be specific, the pore-clogging effect of DOM on biochar suppressed the adsorption capacity and catalytic performance of the three biochar. Furthermore, the removal of DOM decreased the environmental risk of these biochar/PS systems and enhanced the stability of the involved biochar. With respect to the variation in degradation mechanism, the removal of DOM increased the proportion of electron transfer pathway in unison, but the diminution in the roles of O2•¯ and 1O2 was more remarkable in bone-derived-biochar/PS systems. Additionally, the toxicity test illustrated that the leakage and accumulation of DOM were toxic to Chlorella sp., and the DOM from sludge-derived-biochar presented the highest toxicity. Overall, this study analyzes the roles of DOM derived from different biochar in biochar/PS systems and evaluates their environmental risk, which contributes to a comprehensive understanding of the fate of DOM derived from biochar.


Chlorella , Dissolved Organic Matter , Sewage , Charcoal
8.
Water Res ; 221: 118797, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35841795

The carbon-catalyzed persulfate-based advanced oxidation process (PS-AOP) has recently received much focus owing to the green, economical, and sustainable nature of carbon catalysts. In this study, sulfur-doped ordered mesoporous carbons (S-OMCs) were utilized to activate peroxydisulfate (PDS) for ciprofloxacin (CIP) removal. A synthesis temperature gradient was set to regulate the defect level of S-OMCs, since the thermal decomposition of oxygen- and sulfur-containing groups at different temperatures could release S and O and then create defects. In all S-OMCs/PDS systems, 1O2 dominated CIP degradation. Interestingly, a high linear correlation (R2 = 0.9091) between defect level and 1O2 yield was found, confirming the structure-activity relationship between defects and 1O2 generation. Moreover, the impacts of several important reaction conditions and water matrix on S-OMC-1000/PDS activation system were surveyed. In the S-OMC-1000/PDS activation system, CIP removal could attain 85.84% under the condition of unadjusted pH (pH = 5.3) and small amount of S-OMC-1000 (50 mg/L). The S-OMC-1000/PDS activation system also exhibited relatively stable or even better performance in the presence of common inorganic anions and natural organic matter (NOM), manifesting its good potential for practical applications. In addition, the reusability of S-OMC-1000 was investigated. This study provides a practical and high-efficiency way for decontaminating antibiotic-polluted water, and gives an alternative approach for identifying the active site of catalysts.


Carbon , Sulfur , Carbon/chemistry , Catalysis , Ciprofloxacin , Oxygen , Water
9.
Chemosphere ; 293: 133648, 2022 Apr.
Article En | MEDLINE | ID: mdl-35063563

The increasingly serious pollution of antibiotics brings an enormous threat to the ecological environment and human health. Graphite phase carbon nitride (g-C3N4), as a popular photocatalytic material, is widely used in photocatalytic degradation of antibiotics in water. In order to make up for the shortage of g-C3N4 monomer, CeO2/N-doped g-C3N4 (CeNCN) composite photocatalysts co-modified with nitrogen doping and CeO2 loading were designed and synthesized with the idea of expanding visible light absorption and promoting photogenerated carrier separation. CeNCN exhibits excellent photodegradation performance, the removal rate of tetracycline reached 80.09% within 60 min, which is much higher than that of g-C3N4 (CN) and N-doped g-C3N4 (NCN); and the quasi-first-order degradation rate constant is 0.0291, which is 7.86 and 2.29 times higher than CN and NCN. Electron spin resonance and free radical trapping experiments confirmed that h+, O2- and OH are the active substances in the photocatalytic system. After 5 cycles, the degradation efficiency of tetracycline still exceeds 75%, which indicates that CeNCN has good stability. This work proves that N-doping and CeO2 loading can effectively broaden the photoresponse range of g-C3N4, facilitate the separation of photogenerated electron-hole pairs, and provide a reference for the construction of g-C3N4-based photocatalyst with high-efficiency photodegradation activity.


Graphite , Anti-Bacterial Agents , Catalysis , Cerium , Humans , Light , Nitrogen , Nitrogen Compounds , Tetracycline
10.
Chemosphere ; 294: 133736, 2022 May.
Article En | MEDLINE | ID: mdl-35085622

Recently, photo-Fenton technology has been widely used to degrade tetracycline (TC) because of its great efficiency and wide application range. Herein, Fe-Ni layered double hydroxides (FeNi-LDH)/Ti3C2 photo-Fenton system was constructed in this study. The results showed the introduction of Ti3C2 solved some problems of FeNi-LDH such as poor conductivity, easy aggregation, and high recombination rate of photoelectron. Benefiting from these advantages, FeNi-LDH/Ti3C2 exhibited excellent TC removal rate of 94.7% while pure FeNi-LDH was only 54%. Besides, FeNi-LDH/Ti3C2 possessed strong pH tolerance (2-11) and the removal efficiency was still up to 82% after the four-cycle experiment. Furthermore, the quenching experiments revealed the reaction mechanism, where ∙OH and ·O2- were the primary active radicals for degrading TC. Last, the results of the simulated wastewater treatment and the inorganic ion interference tests showed that FeNi-LDH/Ti3C2 possessed practical application potential. In brief, this study shows that FeNi-LDH/Ti3C2 can offer a certain theoretical basis for the actual development of hydrotalcite in heterogeneous photo-Fenton systems.


Titanium , Water , Catalysis , Hydrogen Peroxide , Hydroxides , Tetracycline
11.
Chemosphere ; 293: 133472, 2022 Apr.
Article En | MEDLINE | ID: mdl-34974046

Peroxymonosulfate (PMS)-based advanced oxidation processes for wastewater treatment have received extensive attention in the past years. Here, a novel Mn, Ce co-modified g-C3N4 (MnCe-CN) composite was successfully synthesized by one-step pyrolysis for activating PMS. The physical and chemical characterization of MnCe-CN/PMS was conducted, indicating that Mn and Ce were evenly distributed on g-C3N4 and existed in the form of Mn-N structure and CeO2, respectively. The MnCe-CN/PMS system could effectively degrade pollutants such as acetaminophen (ACT), methylparaben (MeP), p-nitrophenol (PNP), and 2,4-dichlorophenol (2,4-DCP). Among them, 2,4-DCP could be rapidly degraded, reaching 100% within 30 min. The masking experiments and electrochemical testing results revealed that 2,4-DCP was degraded via superoxide radicals (O2˙-), singlet oxygen (1O2), and electron transfer path. The cyclic experiments and real water treatment experiments testified that the oxidative system had excellent stability and applicability. This study provides a facile synthetic method to fabricate bimetallic co-modified g-C3N4 for the enhancement of PMS activation.


Peroxides , Singlet Oxygen , Oxidation-Reduction , Peroxides/chemistry , Superoxides
12.
Sci Total Environ ; 807(Pt 3): 151059, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-34678361

Recently, persulfate (PS) activation system has grown up as a primary branch of advanced oxidation processes, and biochar has been recognized as a potential nonmetal material in this field. However, few studies have focused on the corresponding relationship between actives sites on biochar and active species in AOPs. To pave this way, similar biochar (obtained from different pyrolysis temperature) with different functional structures were involved. In this study, biochar derived from swine bone (BBC) was applied in PS activation system to degrade acetaminophen (ACT). The results showed that both radical and non-radical pathway worked in the PS/BBCs systems, and the degradation rate (from 0.1042 to 0.4364 min-1) climbed with the increase of pyrolysis temperature (from 700 to 900 °C). To probe into the corresponding relationship between functional structure and active species, the effect of pyrolysis temperature on functional structure was analyzed. It came out that 1) defects could act as active sites for various active species; 2) persistent free radicals could do favor to the generation of 1O2 and O2-; 3) hydroxyapatite in swine bone only served as hard templet for the porous structure. ACT degradation process was measured by Liquid chromatograph-mass spectrometer, and Scendesmus obliquus was applied to investigate the toxicity of PS/BBCs system. It illustrated that the existence of SO4- mainly contributed to the generation of high toxic intermediates (such as biphenyl and diphenyl ether) in the PS/BBCs system. Furthermore, the enhancement of adsorption capacity would mitigate the toxicity of PS/BBCs systems to some extent.


Acetaminophen , Charcoal , Acetaminophen/toxicity , Adsorption , Animals , Catalytic Domain , Swine
13.
J Colloid Interface Sci ; 588: 283-294, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-33406463

CeO2 nanoparticles are successfully loaded on carbonate doped Bi2O2CO3 (CBOC) nanosheets by a facile hydrothermal and low-temperature calcination method. CeO2/CBOC heterojunction shows significantly enhanced photocatalytic activity, when 35 mg of CeO2/CBOC photocatalyst is added to tetracycline (TC) solution (20 mg/L, 100 mL), about 79.5% TC is degraded within 90 min under visible light irradiation, which is much higher than that of original CeO2 and CBOC. According to photoelectrochemical characterization and active radical capture experiments, the Z-scheme electron transfer mechanism is the reason for the significant enhancement of photocatalytic activity. Besides, the XPS results indicate that Ce4+/Ce3+ redox pairs are formed at the contact interface between CeO2 and CBOC, which is conducive to the transfer of photoexcited electrons and production of superoxide radicals. Additionally, the photocatalytic mechanism and possible degradation pathway of TC is proposed through free radical trapping experiments and liquid chromatography-mass (LC-MS) analysis. This study will accumulate experience for the combination of CeO2 and bismuth-based nanomaterials, and provide a feasible way to design wide band-gap bismuth-based photocatalysts, thereby achieving efficient visible light degradation of environmental pollutants.

...