Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Cell Commun Signal ; 22(1): 211, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566191

The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.


Precursor Cell Lymphoblastic Leukemia-Lymphoma , Trans-Activators , Animals , Humans , Mice , Doxorubicin , E1A-Associated p300 Protein , Interleukin-3 , Interleukin-3 Receptor alpha Subunit , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Trans-Activators/metabolism
2.
J Cell Mol Med ; 28(9): e18308, 2024 May.
Article En | MEDLINE | ID: mdl-38683131

Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.


Adaptor Proteins, Signal Transducing , Cell Differentiation , Erythroid Cells , Hemin , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Proto-Oncogene Proteins c-crk , Humans , 3' Untranslated Regions , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Differentiation/drug effects , Erythroid Cells/metabolism , Erythroid Cells/drug effects , Erythroid Cells/pathology , Erythroid Cells/cytology , Erythropoiesis/genetics , Erythropoiesis/drug effects , Gene Expression Regulation, Leukemic/drug effects , Hemin/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , MAP Kinase Signaling System/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-crk/metabolism , Proto-Oncogene Proteins c-crk/genetics
3.
Leuk Lymphoma ; : 1-16, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38497543

Chidamide (CS055/HBI-8000, tucidinostat) has shown promising effects in the clinical treatment of various hematologic tumors. Diffuse large B-cell lymphoma (DLBCL) has shown highly heterogeneous biological characteristics. There are complex mechanisms of the role of chidamide in DLBCL for in-depth study. It is essential to probe further into the mechanism of drug-tumor interactions as a guide to clinical application and to understand the occurrence and progression of DLBCL. In vitro and in vivo models were utilized to determine the effects of chidamide on signaling pathways involved in the DLBCL tumor microenvironment. The experimental results show that chidamide inhibited the proliferation of DLBCL cell lines in a dose- and time-dependent manner, and down-regulated the expression of NOTCH1 and NFATC1 in DLBCL cells as well as decreased the concentration of IL-10 in the supernatant. In addition, chidamide significantly lowered the expression of PD1 or TIM3 on CD4+T cells and CD8+T cells and elevated the levels of IL-2, IFN-γ, and TNF-α in the serum of animal models, which augmented the function of circulating T cells and tumor-infiltrating T cells and ultimately significantly repressed the growth of tumors. These findings prove that chidamide can effectively inhibit the cell activity of DLBCL cell lines by inhibiting the activation of NOTCH1 and NFATC1 signaling pathways. It can also improve the abnormal DLBCL microenvironment in which immune escape occurs, and inhibit immune escape. This study provides a new therapeutic idea for the exploration of individualized precision therapy for patients with malignant lymphoma.

4.
Life Sci ; 343: 122527, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38417544

AIMS: RNA-binding proteins (RBPs) play pivotal roles in carcinogenesis and immunotherapy. Leucine-rich pentapeptide repeat-containing protein (LRPPRC) is crucial for RNA polyadenylation, transport, and stability. Although recent studies have suggested LRPPRC's potential role in tumor progression, its significance in tumor prognosis, diagnosis, and immunology remains unclear. MAIN METHODS: We comprehensively analyzed LRPPRC expression in tumors using various databases, including Human Transcriptome Cell Atlas (HTCA), University of California Santa Cruz (UCSC), Human Protein Atlas (HPA), Sangerbox, TISIDB, GeneMANIA, GSCALite, and CellMiner. We examined the correlation between LRPPRC expression level and prognosis, immune infiltration, immunotherapy, methylation, biological function, and drug sensitivity. Single-cell analysis was performed using Tumor Immune Single Cell Hub (TISCH) and CancerSEA software. Patients with acute myeloid leukemia (AML) were categorized based on LRPPRC levels for functional and immune infiltration analyses. The role of LRPPRC in cancer was validated using in vitro experiments. KEY FINDINGS: Our findings revealed that LRPPRC was highly expressed in almost all cancer types, indicating its significant prognostic and diagnostic potential. Notably, LRPPRC was associated with diverse immune features, such as immune cell infiltration, immune checkpoint genes, tumor mutational burden, and microsatellite instability, suggesting its value in guiding immunotherapy strategies. Within AML, the high-expression group had lower levels of immune cells, including CD8+ T cells. In vitro experiments confirmed the inhibitory effects of LRPPRC knockdown on AML cell proliferation. SIGNIFICANCE: This study highlights LRPPRC as a reliable pan-cancer prognostic and immune biomarker, particularly in AML. It lays the groundwork for future research on LRPPRC-targeted cancer therapies.


Biomarkers, Tumor , Carcinogenesis , Leukemia, Myeloid, Acute , Humans , CD8-Positive T-Lymphocytes , Neoplasm Proteins , Prognosis
5.
Biochem Biophys Rep ; 38: 101667, 2024 Jul.
Article En | MEDLINE | ID: mdl-38405662

The ETV6-MECOM fusion gene, produced by the rare and recurrent chromosomal translocation t(3; 12) (q26; p13), is associated with high mortality and short survival in myeloid leukemia. However, its function and underlying mechanisms in leukemia progression remain unknown. In this study, leukemia-stable K562 cells expressing the ETV6-MECOM fusion protein were used to investigate the effects of the ETV6-MECOM oncoprotein. K562-ETV6-MECOM cells were undifferentiated and had reduced colony formation, increased cell migration and invasion, and increased sphere number and diameter in a spheroid formation assay, presenting epithelial-to-mesenchymal transition (EMT) traits. The expression of E-cadherin, a hallmark of EMT, was significantly downregulated at the transcriptional and translational level in K562-ETV6-MECOM cells to explore the mechanistic basis of EMT. Stepwise truncation, DNA sequence deletion, mutation analysis for E-cadherin promoter transactivation, and a dual luciferase assay indicated that the regulatory region of ETV6-MECOM is located in the DNA motif -1116 TTAAAA-1111 of E-cadherin promoter. Moreover, a chromatin immunoprecipitation assay showed that this oncoprotein binds to the DNA motif -1116 TTAAAA-1111 with the anti-EVI1 antibody. Although ETV6-MECOM upregulated the expressions of EMT master regulators, including SNAIL, SLUG, ZEB2, and TWIST2, their knockdown had no effect on EMT-related properties. However, overexpression of E-cadherin eliminated EMT traits in the presence of the ETV6-MECOM oncoprotein. These data confirmed that the ETV6-MECOM oncoprotein, not SNAIL, SLUG, ZEB2, or TWIST2, plays a critical role in inducing EMT traits in leukemia K562 cells. ETV6-MECOM induces EMT-related properties by downregulating the transcriptional expression of E-cadherin and repressing its transactivation activity by binding to its core motif -1116TTAAAA-1111 in leukemia K562 cells. These findings could contribute to the development of a therapeutic target for patients with myeloid leukemia characterized by ETV6-MECOM.

6.
Sci Rep ; 14(1): 2293, 2024 01 27.
Article En | MEDLINE | ID: mdl-38280947

The effects of a second haploidentical bone marrow transplantation with an antithymocyte antibody-containing conditioning regimen after graft failure in patients with severe aplastic anemia remain unclear. Eight severe aplastic anemia patients with graft failure with a median age of 12.5 (range, 3-22) years were retrospectively reviewed. At the second transplantation, they received a median mononuclear cell number of 15.7 (range, 11.2-20.9) × 108/kg or a median CD34+ cell number of 6.2 (range, 2.5-17.5) × 106/kg. They were all successfully engrafted, with a median time of 12.5 (range, 11-16) days for neutrophils and 24 (range, 14-50) days for platelets. Three patients developed skin acute graft-versus-host disease Grades I-II, and another 3 developed limited chronic graft-versus-host disease. All patients successfully recovered after treatment with methylprednisolone (0.5-1 mg/kg/day) and tacrolimus. One patient each died of respiratory failure caused by multidrug-resistant Klebsiella pneumoniae at 8 months and invasive fungal disease at 23 months after transplantation. Six patients survived with a 5-year estimated overall survival of 75% and a median follow-up time of 61 (range, 8-129) months. A second haploidentical bone marrow transplantation with an antithymocyte antibody-containing conditioning regimen was feasible for saving severe aplastic anemia patients with graft failure.


Anemia, Aplastic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Bone Marrow Transplantation , Anemia, Aplastic/therapy , Retrospective Studies , Antilymphocyte Serum/therapeutic use , Graft vs Host Disease/etiology , Transplantation Conditioning , Cyclophosphamide
8.
Sci Rep ; 14(1): 2264, 2024 01 27.
Article En | MEDLINE | ID: mdl-38278930

Multiple myeloma (MM) is a distinguished hematologic malignancy, with existing studies elucidating its interaction with neutrophil extracellular traps (NETs), which may potentially facilitate tumor growth. However, systematic investigations into the role of NETs in MM remain limited. Utilizing the single-cell dataset GSE223060, we discerned active NET cell subgroups, namely neutrophils, monocytes, and macrophages. A transcriptional trajectory was subsequently constructed to comprehend the progression of MM. Following this, an analysis of cellular communication in MM was conducted with a particular emphasis on neutrophils, revealing an augmentation in interactions albeit with diminished strength, alongside abnormal communication links between neutrophils and NK cells within MM samples. Through the intersection of differentially expressed genes (DEGs) between NET active/inactive cells and MM versus healthy samples, a total of 316 genes were identified. This led to the development of a 13-gene risk model for prognostic prediction based on overall survival, utilizing transcriptomics dataset GSE136337. The high-risk group manifested altered immune infiltration and heightened sensitivity to chemotherapy. A constructed nomogram for predicting survival probabilities demonstrated encouraging AUCs for 1, 3, and 5-year survival predictions. Collectively, our findings unveil a novel NET-related prognostic signature for MM, thereby providing a potential avenue for therapeutic exploration.


Extracellular Traps , Multiple Myeloma , Humans , Multiple Myeloma/genetics , Tumor Microenvironment/genetics , Prognosis , Neutrophils
9.
Cancer Res ; 84(3): 479-492, 2024 02 01.
Article En | MEDLINE | ID: mdl-38095536

Osimertinib is a third-generation covalent EGFR inhibitor that is used in treating non-small cell lung cancer. First-generation EGFR inhibitors were found to elicit pro-differentiation effect on acute myeloid leukemia (AML) cells in preclinical studies, but clinical trials yielded mostly negative results. Here, we report that osimertinib selectively induced apoptosis of CD34+ leukemia stem/progenitor cells but not CD34- cells in EGFR-negative AML and chronic myeloid leukemia (CML). Covalent binding of osimertinib to CD34 at cysteines 199 and 177 and suppression of Src family kinases (SFK) and downstream STAT3 activation contributed to osimertinib-induced cell death. SFK and STAT3 inhibition induced synthetic lethality with osimertinib in primary CD34+ cells. CD34 expression was elevated in AML cells compared with their normal counterparts. Genomic, transcriptomic, and proteomic profiling identified mutation and gene expression signatures of patients with AML with high CD34 expression, and univariate and multivariate analyses indicated the adverse prognostic significance of high expression of CD34. Osimertinib treatment induced responses in AML patient-derived xenograft models that correlated with CD34 expression while sparing normal CD34+ cells. Clinical responses were observed in two patients with CD34high AML who were treated with osimertinib on a compassionate-use basis. These findings reveal the therapeutic potential of osimertinib for treating CD34high AML and CML and describe an EGFR-independent mechanism of osimertinib-induced cell death in myeloid leukemia. SIGNIFICANCE: Osimertinib binds CD34 and selectively kills CD34+ leukemia cells to induce remission in preclinical models and patients with AML with a high percentage of CD34+ blasts, providing therapeutic options for myeloid leukemia patients.


Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Leukemia, Myeloid, Acute , Lung Neoplasms , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Proteomics , Cell Proliferation , Lung Neoplasms/metabolism , Leukemia, Myeloid, Acute/genetics , Myeloid Progenitor Cells , ErbB Receptors/metabolism , Antigens, CD34/metabolism , Neoplastic Stem Cells/metabolism
10.
J Chem Phys ; 159(22)2023 Dec 14.
Article En | MEDLINE | ID: mdl-38084813

The fragility of glass describes how rapidly its molecules slow down as it is cooled near its glass transition temperature. In nanoscale films, polymer glasses with higher fragility experience larger reductions in their Tg compared to those with lower fragility. We investigated whether this is due to the free surface of the polymers, which can cause the surface Tg (Tgsurf) to decrease relative to the bulk Tg. By measuring Tgsurf of various polymers, we found that the shift in Tgsurf relative to the bulk Tg increased with fragility. This suggests that more fragile polymers are more susceptible to the free surface effect. We explain this using the concept of energy landscape, as it is used to explain the different slowdown rates between strong and fragile glass formers at Tg.

11.
Front Oncol ; 13: 1277978, 2023.
Article En | MEDLINE | ID: mdl-38111525

Objective: We sought to evaluate the use of quantitative Dixon (Q-Dixon) and intravoxel incoherent motion diffusion imaging (IVIM) for the differential diagnosis of aplastic anemia (AA) and acute myeloid leukemia (AML). Methods: Between August 2021 and October 2023, we enrolled 68 diagnosed patients, including 36 patients with AA and 32 patients with AML, as well as 26 normal controls. All patients underwent 3-Tesla magnetic resonance imaging, which included IVIM and T2*-corrected Q-Dixon imaging at the L2-4 level. The iliac crest biopsy's pathology was used as the diagnostic criterion. The interobserver measurement repeatability was evaluated using the intraclass correlation coefficient (ICC). One-way analysis of variance, Spearman analysis, and receiver operating characteristic curve analysis were used. Results: The fat fraction (FF) and perfusion fraction (f) values were statistically significantly different between the three groups (p < 0.001 and p = 0.007). The FF and f values in the AA group were higher than those in the AML group. The true apparent diffusion coefficient (D) value was substantially negatively correlated to the FF and R2* values (r = -0.601, p < 0.001; r = -0.336, p = 0.002). The f value was positively correlated with both FF and pseudo-apparent diffusion coefficient (D*) values (r = 0.376, p < 0.001; r = 0.263, p = 0.017) and negatively correlated with the D value (r = -0.320, p = 0.003). The FF and f values were negatively correlated with the degree of myelodysplasia (r = -0.597, p < 0.001; r = -0.454, p = 0.004), and the D value was positively correlated with the degree of myelodysplasia (r = 0.395, p = 0.001). For the differential diagnosis of AA and AML, the Q-Dixon model's sensitivity (93.75%) and specificity (84%) confirmed that it outperformed the IVIM model. Conclusion: Q-Dixon parameters have the potential to be used as new biomarkers to differentiate AA from AML.

12.
Cell Rep Med ; 4(11): 101236, 2023 11 21.
Article En | MEDLINE | ID: mdl-37827154

Despite potential impact on the graft vs. leukemia (GVL) effect, immunotherapy targeting CTLA-4 and/or PD-1 has not been successfully combined with bone marrow transplant (BMT) because it exacerbates graft vs. host disease (GVHD). Here, using models of GVHD and leukemia, we demonstrate that targeting hypoxia-inducible factor 1α (HIF1α) via pharmacological or genetic approaches reduces GVHD by inducing PDL1 expression on host tissue while selectively inhibiting PDL1 in leukemia cells to enhance the GVL effect. More importantly, combination of HIF1α inhibition with anti-CTLA-4 antibodies allows simultaneous inhibition of both PDL1 and CTLA-4 checkpoints to achieve better outcomes in models of mouse and human BMT-leukemia settings. These findings provide an approach to enhance the curative effect of BMT for leukemia and broaden the impact of cancer immunotherapy.


Graft vs Host Disease , Leukemia , Humans , CTLA-4 Antigen , Graft vs Host Disease/prevention & control , Hypoxia-Inducible Factor 1, alpha Subunit , Immunotherapy , Leukemia/genetics , Leukemia/therapy , Animals , Mice
13.
Front Oncol ; 13: 1142449, 2023.
Article En | MEDLINE | ID: mdl-37664023

Background: Refractory/relapsed acute myeloid leukemia (R/R AML) has unsatisfactory outcomes even after allogeneic hematopoietic stem cell transplantation. Long-term survival is mainly influenced by complete remission (CR) rates after induction therapies. Objectives: To investigate CR/CR with incomplete hematologic recovery (CRi) rates and adverse events with a new induction therapy (bortezomib, homoharringtonine, and cytarabine [BHA]) for patients with R/R AML. Methods: We enrolled 21 patients with R/R AML (median age, 42 [range, 30-62] years), who received BHA for remission induction (bortezomib, 1.3 mg/m2/day on days 1 and 4; homoharringtonine, 4 mg/m2/day for 5 days, and cytarabine, 1.5 g/m2/day for 5 days). CR and adverse events were assessed. Results: After one course of BHA, the CR/CRi and partial remission rates were 38.1% and 14.3%, respectively, with an overall response rate (ORR) of 52.4% in 21 patients. 9 of 21 patients harbored FLT3-ITD or FLT3-TKD mutations, and achieved either CR/CRi or ORR of 66.7% (P=0.03) by comparison with that in R/R AML without FLT3 mutation. After induction therapy, consolidation chemotherapy or allogeneic hematopoietic stem cell transplantation led to a one-year overall survival of 27.8% in all patients. One-year relapse-free survival was 50% in 8 patients who had achieved CR/CRi after one course of BHA. During induction, non-hematologic adverse events (grade 3/4) commonly were infection (90.5%), hypokalemia (14.4%), hypocalcemia (14.3%), and mucositis (9.5%). In patients achieving CR, the median time to neutrophil count >0.5×109/L and time to platelet count >20×109/L were 15 (13-17) days and 13 (13-18) days, respectively. Conclusion: BHA chemotherapy regimen was safe and tolerable to serve as an induction therapy for R/R AML, particularly with FLT3 mutation. The higher CR/CRi rate will give a clue to determine a potentialeffectiveness of BHA for AML patients carrying FLT3 mutation in a further investigation. Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2000029841.

14.
BMC Cancer ; 23(1): 764, 2023 Aug 17.
Article En | MEDLINE | ID: mdl-37592239

BACKGROUND: Currently, there is no standard treatment for managing relapse in patients with acute myeloid leukemia and myelodysplastic syndrome (AML/MDS) after allogeneic hematopoietic cell transplantation. Venetoclax-based therapies have been increasingly used for treating post-transplantation relapse of AML. The aim of this systematic review and meta-analysis was to evaluate the efficacy and adverse events of Venetoclax combined with hypomethylating agents (HMAs) for AML/MDS relapse post-transplantation. METHODS: We searched PubMed, Web of Science, Excerpta Medica Database, Cochrane Library, and Clinical. gov for eligible studies from the inception to February 2022. The Methodological Index for Non-Randomized Studies was used to evaluate the quality of the included literatures. The inverse variance method calculated the pooled proportion and 95% confidence interval (CI). RESULTS: This meta-analysis included 10 studies involving a total of 243 patients. The pooled complete response and complete response with incomplete blood count recovery rate of Venetoclax combined with HMAs for post-transplantation relapse in AML/MDS was 32% (95% CI, 26-39%, I2 = 0%), with an overall response rate of 48% (95% CI, 39-56%, I2 = 37%). The 6-month survival rate was 42% (95% CI, 29-55%, I2 = 62%) and the 1-year survival rate was 23% (95% CI, 11-38%, I2 = 78%). CONCLUSION: This study demonstrated a moderate benefit of Venetoclax in combination with HMAs for patients with relapsed AML/MDS post-transplantation (including those who have received prior HMAs therapy), and may become one of treatment options in the future. Large-scale prospective studies are needed to confirm the potential benefit from venetoclax combined with HMAs.


Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Neoplasms, Second Primary , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Chronic Disease , Myelodysplastic Syndromes/drug therapy
15.
Biochem Biophys Res Commun ; 675: 155-161, 2023 10 01.
Article En | MEDLINE | ID: mdl-37473530

Acute myeloid leukemia (AML) is a heterogeneous disease and about one third of AML patients carry nucleophosmin (NPM1) mutation. Because 95% mutations give NPM1 an additional nuclear export signaling (NES) and dislocate NPM1 in cytoplasm (NPMc+), relocating NPM1 in nucleus provide an innovative strategy for treating this type of AML. The nuclear export of NPM1 depends on the nuclear protein export receptor XPO1, which recognizes the NES sequence on NPM1. Homoharringtonine (HHT) is a first-line chemotherapy drug of AML, yet the exact mechanism of its anti-AML activity is elusive. In this study, we found that HHT can directly target XPO1 to its NES-binding cleft, bind to Cys528 of XPO1, and inhibits its nuclear transport function. In addition, HHT can block NPMc+ proteins nuclear export and thus make NPMc+ AML cells much more sensitive to HHT treatment. Furthermore, the sensitivity of NPMc+ AML cells to HHT is a universal phenomenon irrespective of the different genetic lesions of AML. Taken together, our findings suggest that XPO1 is a new target of HHT and provide a novel strategy for NPMc+ AML treatment.


Leukemia, Myeloid, Acute , Humans , Homoharringtonine , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Mutation
16.
Blood ; 142(10): 903-917, 2023 09 07.
Article En | MEDLINE | ID: mdl-37319434

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Angiopoietin-Like Protein 7 , Inhibitor of Differentiation Protein 1 , Leukemia, Myeloid, Acute , Animals , Mice , Angiopoietin-Like Protein 7/genetics , Angiopoietin-Like Protein 7/metabolism , Bone Marrow/metabolism , Disease Models, Animal , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Tumor Microenvironment , Humans , Inhibitor of Differentiation Protein 1/metabolism
17.
Hematology ; 28(1): 2198098, 2023 Dec.
Article En | MEDLINE | ID: mdl-37036307

OBJECTIVES: The meta-analysis sought to evaluate the efficacy and safety of a combination of venetoclax (Ven) and azacitidine (AZA) in the treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). METHODS: We searched PubMed, Excerpta Medica Database (EMBASE), Cochrane Library, and Web of Science for eligible studies from inception to June 2022. We used the Cochrane Risk of Bias 2.0 (RoB 2.0) and Methodological Index for Non-Randomized Studies (MINORS) to evaluate the quality of the included literature. The inverse variance method was used to calculate the pooled proportion and 95% confidence interval (CI). RESULTS: The meta-analysis included nineteen studies with a total of 1615 patients. The pooled overall CR/CRi (complete response (CR)/complete response with incomplete blood count recovery (CRi)) rate for AML and MDS was 57.9% (95% CI 49.5-65.9%, I2 = 83%). Subgroup analyses showed that the rate of pooled CR/CRi was 67.5% (95% CI 61.1-73.3%, I2 = 54%) for the new-diagnosed (ND) AML group, 30% (95% CI 20-44.1%, I2 = 66%) for relapsed/refractory (R/R) AML, and 67.6% (95% CI 52.6-79.8%, I2 = 65%) for MDS, respectively. One randomized controlled trial (RCT) showed that CR/CRi was 64.7% in ND-AML patients. A total of 9 studies reported adverse events, with neutropenia being the most common of grade 3-4 adverse events, with a rate of 53.7% (95% CI 61.1-73.3%, I2 = 54%). CONCLUSION: The present meta-analysis demonstrated that the Ven + AZA regimen is efficacious for the treatment of AML and MDS, with it being more effective for ND-AML than R/R AML. The most common adverse effects of this regimen are grade 3-4 neutropenia and neutropenia with fever.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Neutropenia , Humans , Azacitidine/adverse effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/etiology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/etiology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neutropenia/etiology
18.
Exp Hematol Oncol ; 12(1): 19, 2023 Feb 17.
Article En | MEDLINE | ID: mdl-36797781

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a refractory and recurrent subtype of B-cell ALL enriched with kinase-activating rearrangements. Incomplete understanding of the heterogeneity within the tumor cells presents a major challenge for the diagnosis and therapy of Ph-like ALL. Here, we exhibited a comprehensive cell atlas of one Ph-like ALL patient with a novel TPR-PDGFRB fusion gene at diagnosis and relapse by using single-cell RNA sequencing (scRNA-seq). Twelve heterogeneous B-cell clusters, four with strong MKI67 expression indicating highly proliferating B cells, were identified. A relapse-enriched B-cell subset associated with poor prognosis was discovered, implicating the transcriptomic evolution during disease progression. Integrative single-cell analysis was performed on Ph-like ALL and Ph+ ALL patients, and revealed Ph-like specific B-cell subpopulations and shared malignant B cells characterized by the ectopic expression of the inhibitory receptor CLEC2D. Collectively, scRNA-seq of Ph-like ALL with a novel TPR-PDGFRB fusion gene provides valuable insights into the underlying heterogeneity associated with disease progression and offers useful information for the development of immunotherapeutic techniques in the future.

19.
Blood ; 141(7): 766-786, 2023 02 16.
Article En | MEDLINE | ID: mdl-36322939

Extramedullary infiltration (EMI) is a concomitant manifestation that may indicate poor outcome of acute myeloid leukemia (AML). The underlying mechanism remains poorly understood and therapeutic options are limited. Here, we employed single-cell RNA sequencing on bone marrow (BM) and EMI samples from a patient with AML presenting pervasive leukemia cutis. A complement C1Q+ macrophage-like leukemia subset, which was enriched within cutis and existed in BM before EMI manifestations, was identified and further verified in multiple patients with AML. Genomic and transcriptional profiling disclosed mutation and gene expression signatures of patients with EMI that expressed high levels of C1Q. RNA sequencing and quantitative proteomic analysis revealed expression dynamics of C1Q from primary to relapse. Univariate and multivariate analysis demonstrated adverse prognosis significance of C1Q expression. Mechanistically, C1Q expression, which was modulated by transcription factor MAF BZIP transcription factor B, endowed leukemia cells with tissue infiltration ability, which could establish prominent cutaneous or gastrointestinal EMI nodules in patient-derived xenograft and cell line-derived xenograft models. Fibroblasts attracted migration of the C1Q+ leukemia cells through C1Q-globular C1Q receptor recognition and subsequent stimulation of transforming growth factor ß1. This cell-to-cell communication also contributed to survival of C1Q+ leukemia cells under chemotherapy stress. Thus, C1Q served as a marker for AML with adverse prognosis, orchestrating cancer infiltration pathways through communicating with fibroblasts and represents a compelling therapeutic target for EMI.


Complement C1q , Leukemia, Myeloid, Acute , Humans , Proteomics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/metabolism , Prognosis , Chronic Disease , Recurrence
20.
Cancer Rep (Hoboken) ; 6(1): e1735, 2023 01.
Article En | MEDLINE | ID: mdl-36253342

BACKGROUND: With the progression of next-generation sequencing technologies, researchers have identified numerous variants of the regulator of telomere elongation helicase 1 (RTEL1) gene that are associated with a broad spectrum of phenotypic manifestations, including malignancies. At the molecular level, RTEL1 is involved in the regulation of the repair, replication, and transcription of deoxyribonucleic acid (DNA) and the maintenance of telomere length. RTEL1 can act both as a promotor and inhibitor of tumorigenesis. Here, we review the potential mechanisms implicated in the malignant transformation of tissues under conditions of RTEL1 deficiency or its aberrant overexpression. RECENT FINDINGS: A major hemostatic challenge during RTEL1 dysfunction could arise from its unbalanced activity for unwinding guanine-rich quadruplex DNA (G4-DNA) structures. In contrast, RTEL1 deficiency leads to alterations in telomeric and genome-wide DNA maintenance mechanisms, ribonucleoprotein metabolism, and the creation of an inflammatory and immune-deficient microenvironment, all promoting malignancy. Additionally, we hypothesize that functionally similar molecules could act to compensate for the deteriorated functions of RTEL1, thereby facilitating the survival of malignant cells. On the contrary, RTEL1 over-expression was directed toward G4-unwinding, by promoting replication fork progression and maintaining intact telomeres, may facilitate malignant transformation and proliferation of various pre-malignant cellular compartments. CONCLUSIONS: Therefore, restoring the equilibrium of RTEL1 functions could serve as a therapeutic approach for preventing and treating malignancies.


DNA Helicases , Neoplasms , Telomere , Humans , DNA , Neoplasms/genetics , Telomere/genetics , Tumor Microenvironment , DNA Helicases/genetics
...