Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 280(Pt 1): 135630, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278445

RESUMEN

Conductive hydrogels as ideal candidate materials for flexible sensors have exhibited many promising applications. However, complex application environments, such as low temperatures or underwater conditions, have introduced new requirements for hydrogel sensors. Herein, a high-performance conductive hydrogel based on carboxymethyl cellulose-polyaniline (CMC-PANI) submicron spheres, poly (vinyl alcohol) (PVA) and phytic acid (PA) was designed and fabricated via a dual design strategy. CMC-PANI particles were introduced to not only empower the good electromechanical performance to the hydrogels, but also enhance the mechanical properties. The obtained hydrogel exhibited good mechanical property, anti-freezing, anti-swellable behavior and recyclable performance. Resistive-type strain sensors assembled by the prepared hydrogels exhibited high pressure sensitivity (34.17×10-2 kPa-1) and fast response time (100 ms), which can clearly detect the pulse beats. Moreover, the hydrogel sensors can achieve long-term stability, high sensitivity and fatigue resistance as an underwater sensor. Based on these favorable performances, the conductive polymer hydrogels may open up an enticing avenue for functional soft materials in health diagnostic and electronic components.

2.
Int J Biol Macromol ; : 136105, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343264

RESUMEN

Intrinsic environmental and stability limitations of hydrogels have inhibited their practical applications as a flexible wearable device due to water evaporation or freezing in complex environments such as low temperatures and arid environments. In this work, a multifunctional gelatin based ionic conductive eutectogel with double network structure is designed via ternary deep eutectic solvent (DES) (acrylic acid (AA), choline chloride (ChCl) and ethylene glycol (EG)). In this system, the introduction of ethylene glycol (EG) can be used to dissolve gelatin. The resulting DESG eutectogel exhibited excellent adhesion, mechanical robustness, anti-freeze, anti-drying, and self-healing. Interestingly, the DESG gels showed high humidity sensitivity in a wide humidity detection range (11 %-83 %), which can be assembled as a self-powdered humidity sensor to monitor human mouth and nose breathing. This work is expected to bring new prospect to construct high performance humidity sensors using gelatin based humidity-responsive materials for a wide range of potential applications in respiratory diagnostics, sleep monitoring, electronic skin and wearable electronics.

3.
Carbohydr Polym ; 329: 121784, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286530

RESUMEN

Conductive hydrogels as promising candidate materials for flexible strain sensors have gained considerable attentions. However, it is still a great challenge to construct hydrogel with multifunctional performance via natural polymer. Herein, a novel multifunctional conductive hydrogel based on methylcellulose and cellulose nanocrystal was prepared via a facile and low-cost strategy. Methylcellulose (MC) was introduced to not only guarantee the stability of tannic acid coated cellulose nanocrystal (TA@CNCs) in LiCl solution, but also improve anti-freezing ability. The obtained hydrogel exhibited high transparency (98 % at 800 nm), good stretchability (663.1 %), low temperature tolerance (-23.9 °C), superior conductivity (2.89 S/m) and excellent UV shielding behavior. Flexible strain sensor assembled by the prepared hydrogels can be used to detect human body motions include subtle and large motions, and exhibited good sensitivity and stability over a wide temperature range. Multiple flexible hydrogels can also be assembled into a 3D sensor array to detect the distribution and magnitude of spatial pressure. Therefore, the hydrogels prepared via natural polymers will have broad application prospects in wearable devices, electronic skin and multifunctional sensor components.

4.
Int J Biol Macromol ; 253(Pt 4): 127113, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37774823

RESUMEN

The development of environmentally friendly and low-cost adsorbents with high adsorption capacity remains a challenge. Herein, chitin nanofiber-polydopamine composite materials (CNDA) have been obtained by surface modification of chitin nanofiber using dopamine. According to the results of transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), and X-ray photoelectron spectrometer (XPS), polydopamine have been successfully coated on the surface of chitin nanofiber (ChNF). The ability to remove methylene blue (MB) has been analyzed via standard adsorption experiments, indicating that the maximum adsorption capacity (qmax) can reach 196.6 mg/g at MB initial concentration of 50 mg/L. Most importantly, the adsorption kinetics, isotherm, and thermodynamics were used to investigate the MB adsorption mechanism on composites. This indicated that the polydopamine on the surface of chitin nanofiber (ChNF) plays an important role in the MB dye adsorption. Moreover, the removal ability of CNDA to metal ions has also been investigated, indicating high capacities for Fe3+, Mn2+, Cu2+, and Ni2+. Based on their biodegradability and good adsorption capacity, the CNDA composite material can be considered a promising adsorbent for wastewater treatment.


Asunto(s)
Nanofibras , Contaminantes Químicos del Agua , Quitina , Dopamina , Termodinámica , Metales , Adsorción , Azul de Metileno , Iones , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
5.
Int J Biol Macromol ; 242(Pt 1): 124780, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172700

RESUMEN

To meet the requirements of eco-friendly and sustainability in the 21st century, hydrogels based on biopolymer with conductivity and stretchable property have attained increasing attention for strain sensor. However, the as-prepared of hydrogel sensor with excellent mechanical property and high strain sensitivity is still a challenge. In this study, chitin nanofiber (ChNF) reinforced composite hydrogels of PACF are fabricated via a facile one-pot method. The obtained PACF composite hydrogel exhibits good transparency (80.6 % at 800 nm)and excellent mechanical properties (tensile strength, 261.2 kPa; tensile strain as high as 550.3 %). Moreover, the composite hydrogels also demonstrate excellent anti-compression performance. The composite hydrogels own good conductivity (1.20 S/m) and strain sensitivity. Most importantly, the hydrogel can be assembled as a strain/pressure sensor for detecting large-scale and small-scale human motion. Therefore, flexible conductive hydrogel strain sensors will have broad application prospects in artificial intelligence, electronic skin, and personal health.


Asunto(s)
Nanofibras , Dispositivos Electrónicos Vestibles , Humanos , Quitina , Hidrogeles , Inteligencia Artificial , Conductividad Eléctrica
6.
Int J Biol Macromol ; 242(Pt 1): 124746, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37148945

RESUMEN

Hydrogel sensors attained increasing attention due to their excellent mechanical and sensing properties. However, it is still a big challenge to fabricate hydrogel sensors with multifunctional properties of transparent, high stretchability, self-adhesive and self-healing ability. In this study, chitosan as a natural polymer has been employed to construct a polyacrylamide-chitosan-Al3+ (PAM-CS-Al3+) double network (DN) hydrogel with high transparency (>90 % at 800 nm), good electrical conductivity (up to 5.01 S/m) and excellent mechanical properties (strain and toughness as high as 1040 % and 730 kJ/m3). Moreover, the dynamic ionic and hydrogen bond interaction between PAM and CS endowed the PAM-CS-Al3+ hydrogel good self-healing ability. In addition, the hydrogel possesses good self-adhesive ability on different substrates, including glass, wood, metal, plastic, paper, polytetrafluoroethylene (PTFE) and rubber. Most importantly, the prepared hydrogel could be assembled into transparent, flexible, self-adhesive, self-healing and high sensitive strain/pressure sensor for monitoring human body movement. This work may pave the way for fabricating the multifunctional chitosan-based hydrogels which has potential application in the fields of wearable sensor and soft electronic devices.


Asunto(s)
Quitosano , Prunella , Humanos , Hidrogeles , Cementos de Resina , Piel , Conductividad Eléctrica
7.
J Org Chem ; 88(1): 116-131, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36538325

RESUMEN

A KOtBu-promoted, three-component cross-coupling of arenes(indoles/phenols), C60, and (per/poly)fluoroarenes has been established for the one-pot efficient synthesis of various 1,4-arene-bridged bis(polyfluoroaryl)-functionalized [60]fullerenes. This developed reaction system demonstrates good functional group compatibilities with broad substrate scope, which exhibits high regio- and chemoselectivities. Further control experiment succeeded in providing a one-pot protocol for the synthesis of various 1,2-N-(per/poly)fluoroarene-substituted 1,2-(3-indole)(hydro)fullerenes.

8.
J Colloid Interface Sci ; 608(Pt 2): 2111-2119, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34752981

RESUMEN

Three-dimensional (3D) plasmonic nano-arrays can provide high surface-enhanced Raman scattering (SERS) sensitivity, good spectral uniformity and excellent reproducibility. However, it is still a challenge to develop a simple and efficient method for fabrication of 3D plasmonic nano-arrays with high SERS performance. Here we report a facile approach to construct ordered arrays of silver (Ag) nanoparticles-assembled spherical micro-cavities using polystyrene (PS) sphere template-assisted electrodeposition and post-growth. The electrodeposited small Ag nanoparticles grow into bigger stable nanoparticles during the post-growth process, which could significantly improve the SERS sensitivity. The Ag nanoparticles-assembled 3D micro-cavity array provides much more hotspots in the excitation laser beam-covered volume than the two-dimensional counterpart. The relative standard deviation (RSD) of 612 cm-1 peak of rhodamine 6G (R6G) was calculated to be 8%, and the RSD of the characteristic peak taken from substrates of different batches was less than 10%. The detectable lower concentration as low as 1 fM was achieved for an aqueous solution of R6G. Such SERS substrate also showed high sensitivity to thiram (fungicide) and paraquat (herbicide) in water with limits of detection of 0.067 nM and 2.5 nM respectively. Furthermore, it also demonstrated that SERS detection of pesticide residues on fruits can be realized, showing a potential application in rapid monitoring food safety.


Asunto(s)
Nanopartículas del Metal , Espectrometría Raman , Galvanoplastia , Reproducibilidad de los Resultados , Plata
9.
RSC Adv ; 11(28): 17352-17359, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35479671

RESUMEN

Developing high-performance electrocatalysts for urea oxidation reaction (UOR) can not only solve the problem of environmental pollution, but also solve the problem of the energy crisis by producing hydrogen for electrodes. The preparation of porous three-dimensional nanostructures as efficient electrocatalysts has become important work. Here, we developed a novel three-dimensional (3D) nanostructure of NiFe(OH) X nanoparticles/nickel foam with a high active area by a simple electroplating method and a subsequent treatment with ferric ion solution. This structure shows much greater UOR activity than the control sample (Ni/Ni foam) with the potential of 1.395 V (vs. RHE) (with an overpotential of 1.025 V) for driving the current density of 100 mA cm-2 in 1.0 M KOH electrolyte with 0.33 M urea. This work not only provides rapid and large-scale preparation of a three-dimensional nanostructure, but also gives a new way to design and obtain high-performance electrocatalysts.

10.
J Biomed Mater Res A ; 107(7): 1532-1540, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30821077

RESUMEN

The trinary hydroxyapatite@Fe3 O4 @N-doped carbon dots (HA@Fe3 O4 @N-CDs) hybrids were prepared by one-pot hydrothermal approach and utilized to detect and remove lead ion from aqueous solution. The structures and morphologies of as-obtained nanorod-like HA@Fe3 O4 @N-CDs hybrids were characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy measurements. These HA@Fe3 O4 @N-CDs hybrids possess good magnetism by magnetic hysteresis test and multi-colored fluorescence by the CLSM measurement. Furthermore, the as-obtained hybrids display excellent biocompatibility by MTT assay. Importantly, the trinary magnetic HA@Fe3 O4 @N-CDs hybrids as a green detector and adsorbent of Pb2+ were investigated. The influence of the different pH, the concentration of heavy metal, and the maximum adsorption capacity on removal efficiency was measured in detail. The maximum Pb2+ adsorption capacity on HA@Fe3 O4 @N-CDs hybrids is 450 mg/g. The kinetic mechanism was a pseudo-second order model, and the isotherm data was fitted well by the Langmuir isotherm and Freundlich model. Hence, the nanorod-like HA@Fe3 O4 @N-CDs hybrids could be a multifunctional material with significant potential applications in heavy metal detection and adsorption, bone tissue regeneration, magnetic therapy, and biomedicine. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.


Asunto(s)
Materiales Biocompatibles/química , Carbono/química , Durapatita/química , Compuestos Férricos/química , Plomo/análisis , Puntos Cuánticos/química , Adsorción , Concentración de Iones de Hidrógeno , Iones , Espectroscopía de Fotoelectrones , Puntos Cuánticos/ultraestructura , Temperatura , Factores de Tiempo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA