Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 396: 133661, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35849987

RESUMEN

Phenolic compounds in cereal and legume seeds show numerous benefits to human health mainly because of their good antioxidant capacity. However, long-term storage and some improper preservation may reduce their antioxidant potential. It is necessary to retain or modify the phenolic antioxidants with improved technology before consumption. Radiation processing is usually applied as a physical method to extend the shelf life and retain the quality of plant produce. However, the effect of radiation processing on phenolic antioxidants in cereal and legume seeds is still not well understood. This review summarizes recent research on the effect of radiation, including ionizing and nonionizing radiation on the content and profile of phenolic compounds, and antioxidant activities in cereal and legume seeds, the influencing factors and possible mechanisms are also discussed. The article will improve the understanding of radiation effect on phenolic antioxidants, and promote the radiation modification of natural phenolic compounds in cereal and legume seeds and other sources.


Asunto(s)
Antioxidantes , Fabaceae , Antioxidantes/análisis , Grano Comestible/química , Humanos , Fenoles/análisis , Semillas/química , Verduras
2.
ACS Appl Mater Interfaces ; 10(35): 29909-29917, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30047262

RESUMEN

It is highly challenging to achieve an optically deformable polymer with good controllability, stability, and self-healability for fabricating an optically controlled microrobotics. Here, we present a photo-responsive self-healing supramolecular assembly cross-linked by 3,3',5,5'-azobenzenetetracarboxylic acid (t-Azo) enabling the controllable and stable deformation. The network (PAA-u) of polyacrylic acid (PAA) grafted with 2-ureido-4[1 H]-pyrimidinone (UPy) is formed via multiple intermolecular hydrogen bonds (H-bonds) between UPy and t-Azo moieties. Molecular H-bonds stabilize the cis-isomer, enables stress transfer at the interface, and also contributes to fast healability. The PAA-u/t-Azo assembly shows a green-light-induced bending deformation, which recovers its shape under the irradiation of UV light. On the basis of this controllable and reversible deformation, the PAA-u/t-Azo "hand" realizes reversible light-driven grabbing and releasing of an object by optimizing bending and recovery. The assembly also shows a fast and excellent self-healing performance irradiated by green light during deformation. The multiple-H-bonding-cross-linked assembly with stable deformation and fast self-healability can be used for the development of a multitude of advanced microrobotics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...