Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Eur J Hum Genet ; 32(6): 647-655, 2024 Jun.
Article En | MEDLINE | ID: mdl-38627542

Acrokeratoelastoidosis (AKE) is a rare autosomal dominant hereditary skin disease characterized by small, round-oval, flat-topped keratotic papules on the palms, soles and dorsal aspect of hands or feet. The causative gene for AKE remains unidentified. This study aims to identify the causative gene of AKE and explore the underlying biological mechanisms. A large, three-generation Chinese family exhibiting classic AKE symptoms was identified. A genome-wide linkage analysis and whole-exome sequencing were employed to determine the causative gene. shRNA knockdown in human skin fibroblasts and CRISPR/Cas9 knockout in HEK293T cells were utilized to assess gene functions in the progression of elastic fiber biosynthesis. The linkage analysis identified a susceptibility region between rs7296765 to rs10784618 on chromosome 12. Whole-exome sequencing confirmed a splicing mutation of 1101 + 1 G > A in the CCDC91 gene, resulting in exon 11 skipping and a subsequent 59-amino-acid-residue loss (residues L309-Q367del). Further functional analysis revealed distended Golgi cisternae, cytoplasmic vesicle accumulation, and lysosome presence. Immnunostaining of si-CCDC91-HSF cells demonstrated tropoelastin accumulation in the Golgi and abnormal extracellular aggregates. There are no significant changes in Fibrillin-1 microfibril assembly and lysyl oxidase activity. The findings strongly suggest that the protein product of the CCDC91 gene plays a crucial role in elastin transport. This discovery enhances our understanding of CCDC91's function and broadens the known pathogenic mechanisms of AKE.


Pedigree , Adult , Female , Humans , Male , Middle Aged , Exome Sequencing , HEK293 Cells , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/pathology , Keratoderma, Palmoplantar/metabolism , Mutation
2.
Anal Chem ; 96(1): 401-408, 2024 01 09.
Article En | MEDLINE | ID: mdl-38134291

Fluorescent lateral flow immunoassay (LFA) systems are versatile tools for sensitive and quantitative detection of disease markers at the point of care. However, traditional fluorescent nanoparticle-based lateral flow immunoassays are not visible under room light, necessitate an additional fluorescent reader, and lack flexibility for different application scenarios. Herein, we report a dual-readout LFA system for the rapid and sensitive detection of C-reactive protein (CRP) in clinical samples. The system relied on the aggregation-induced emission nanobeads (AIENBs) encapsulated with red AIE luminogen, which possesses both highly fluorescent and colorimetric properties. The AIENB-based LFA in the naked-eye mode was able to qualitatively detect CRP levels as low as 8.0 mg/L, while in the fluorescent mode, it was able to quantitatively measure high-sensitivity CRP (hs-CRP) with a limit of detection of 0.16 mg/L. The AIENB-based LFA system also showed a good correlation with the clinically used immunoturbidimetric method for CRP and hs-CRP detection in human plasma. This dual-modal AIENB-based LFA system offers the convenience of colorimetric testing and highly sensitive and quantitative detection of disease biomarkers and medical diagnostics in various scenarios.


C-Reactive Protein , Nanoparticles , Humans , Point-of-Care Systems , Immunoassay/methods , Limit of Detection , Coloring Agents
3.
Biomed Res Int ; 2022: 1177299, 2022.
Article En | MEDLINE | ID: mdl-35586812

Backgrounds: Psoriasis and atopic dermatitis are two common chronic inflammatory skin diseases that enormously deteriorate the psycho-physical and socio-economic condition of the patients. Although differential immune responses have been found to operate in the pathomechanisms of atopic dermatitis and psoriasis, the epidermal keratinocytes are the major targets in both diseases, and sometimes, they show similar clinical presentations. The skin barrier, itching, and inflammation are current and future treatment targets for both of them, but the relevant shared mechanisms of the two diseases are far from understood. Methods: The differential analyses of GSE14905 (psoriasis) and GSE32924 (atopic dermatitis) deposited in GEO database were conducted and obtained their differential expressed genes. Moreover, PPI, functional modules, GO, and KEGG enrichment analyses were used for the further analysis. The mouse models of psoriasis and atopic dermatitis were established, and then, RT-qPCR and Western blotting assay were performed to check the abundant changes of hub genes. Results: There are 732 differentially expressed genes in psoriasis versus nonlesional skin samples. Besides, 611 differentially expressed genes were identified in atopic dermatitis versus nonlesional skin data sets. Based on these differentially expressed genes, we predicted their joint and individual protein-protein interaction networks and functional modules in both psoriasis and atopic dermatitis. Through the PPI network of genes, we calculated the hub nodes and do the GO and KEGG enrichment analysis of overlapped genes of psoriasis and atopic dermatitis, which suggested there were some terms like "positive regulation of interleukin-12 production," "centromeric region," and "TNF signaling pathway." Conclusion: We constructed the predicted PPI networks and functional modules related to psoriasis and atopic dermatitis and distinguished the key candidate target genes CXCL8, STAT1, and MMP9 in the diagnosis and therapy of similar pathogenesis.


Dermatitis, Atopic , Psoriasis , Animals , Dermatitis, Atopic/metabolism , Gene Expression Profiling , Humans , Mice , Protein Interaction Maps/genetics , Psoriasis/metabolism , Skin/pathology
4.
Exp Mol Pathol ; 122: 104672, 2021 10.
Article En | MEDLINE | ID: mdl-34371012

OBJECTIVE: In most cases, dermatofibrosarcoma protuberans (DFSP) is characterized by the chromosomal translocation t (17; 22) (q22; q13) that leads to a fusion of collagen type 1 alpha 1 (COL1A1) and platelet-derived growth factor beta chain (PDGFB). Recently, next-generation sequencing (NGS) has been reported to detect fusion transcripts in some malignancies. Therefore, the present study aimed to evaluate the utility of the targeted NGS in detecting the COL1A1-PDGFB fusion in patients with DFSP. METHODS: We designed a targeted DNA capture panel to tile along the fusion regions, including exon, intron, and untranslated regions of the COL1A1 and PDGFB. A cohort of 18 DNA samples extracted from formalin-fixed, paraffin-embedded tissues was used to evaluate the targeted NGS. The results were compared with that of fluorescence in situ hybridization (FISH). RESULTS: The COL1A1-PDGFB fusion was identified in 13 of 18 cases (72.2%) by targeted NGS assay. PDGFB breakpoints were constantly found in exon 2, while breakpoints in COL1A1 varied from exon 15 to 46. Of these 18 cases assayed by FISH, 12 (66.7%) exhibited COL1A1-PDGFB fusion signals. One case (P9), which was FISH-negative, was demonstrated with the fusion by targeted NGS and validated by PCR and Sanger sequencing. The targeted NGS results showed a high concordance with the results of the FISH assay (94.4%). CONCLUSION: Our study reported a targeted NGS assay for detecting the breakpoints of the COL1A1-PDGFB fusion gene, which can be implemented in diagnosing patients with DFSP.


Collagen Type I, alpha 1 Chain/genetics , Dermatofibrosarcoma/diagnosis , Pathology, Molecular , Proto-Oncogene Proteins c-sis/genetics , Adolescent , Adult , Aged , Child , Chromosome Breakpoints , Dermatofibrosarcoma/genetics , Dermatofibrosarcoma/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Translocation, Genetic , Young Adult
6.
J Nanobiotechnology ; 19(1): 116, 2021 Apr 23.
Article En | MEDLINE | ID: mdl-33892737

BACKGROUND: Highly efficient capture and detection of circulating tumor cells (CTCs) remain elusive mainly because of their extremely low concentration in patients' peripheral blood. METHODS: We present an approach for the simultaneous capturing, isolation, and detection of CTCs using an immuno-fluorescent magnetic nanobead system (iFMNS) coated with a monoclonal anti-EpCAM antibody. RESULTS: The developed antibody nanobead system allows magnetic isolation and fluorescent-based quantification of CTCs. The expression of EpCAM on the surface of captured CTCs could be directly visualized without additional immune-fluorescent labeling. Our approach is shown to result in a 70-95% capture efficiency of CTCs, and 95% of the captured cells remain viable. Using our approach, the isolated cells could be directly used for culture, reverse transcription-polymerase chain reaction (RT-PCR), and immunocytochemistry (ICC) identification. We applied iFMNS for testing CTCs in peripheral blood samples from a lung cancer patient. CONCLUSIONS: It is suggested that our iFMNS approach would be a promising tool for CTCs enrichment and detection in one step.


Antigens, Neoplasm/immunology , Magnetics/methods , Neoplastic Cells, Circulating/immunology , Quantum Dots/chemistry , Antibodies , Cell Line, Tumor , Cell Separation , Epithelial Cell Adhesion Molecule , Fluorescent Dyes , Humans , Magnetite Nanoparticles , Maleates , Nanotechnology , Neoplastic Cells, Circulating/pathology , Particle Size , Polystyrenes
7.
Virulence ; 12(1): 217-230, 2021 12.
Article En | MEDLINE | ID: mdl-33404349

The incidence of fungal infections has increased continuously in recent years. Caspofungin (CAS) is one of the first-line drugs for the treatment of systemic fungal infection. However, the emerging CAS-resistant clinical isolates and high economic cost for CAS administration hamper the wide application of this drug. Thus, the combined administration of CAS with other compounds that can enhance the antifungal activity and reduce the dose of CAS has gained more and more attention. In this study, we investigated the effect of mangiferin (MG) on the antifungal activities of CAS. Our results showed that MG acted synergistically with CAS against various Candida spp., including CAS-resistant C. albicans. Moreover, MG could enhance the activity of CAS against biofilm. The in vivo synergism of MG and CAS was further confirmed in a mouse model of disseminated candidiasis. To explore the mechanisms, we found that SPE1-mediated polyamine biosynthesis pathway was involved in the fungal cell stress to caspofungin. Treatment of CAS alone could stimulate SPE1 expression and accumulation of polyamines, while combined treatment of MG and CAS inhibited SPE1 expression and destroyed polyamine accumulation, which might contribute to increased oxidative damage and cell death. These results provided a promising strategy for high efficient antifungal therapies and revealed novel mechanisms for CAS resistance.


Antifungal Agents/pharmacology , Candida/drug effects , Caspofungin/pharmacology , Polyamines/metabolism , Xanthones/pharmacology , Animals , Antifungal Agents/administration & dosage , Biofilms/drug effects , Candida/classification , Candida/pathogenicity , Candidiasis/drug therapy , Caspofungin/administration & dosage , Drug Resistance, Fungal , Drug Synergism , Female , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Xanthones/administration & dosage
8.
Mikrochim Acta ; 187(11): 598, 2020 10 09.
Article En | MEDLINE | ID: mdl-33034772

A highly sensitive quantum dot (QD)-based western blot assay with extended dynamic range was developed. Bimodal size distribution QD (BQ) immunoprobes composed of small size single QD (7.3 nm) and big size QD nanobead (QB) (82.9 nm) were employed for fluorescent western blot immunoassay on a membrane. Small size QD immunoprobes contributed to wider dynamic range of assay, while big size QB immunoprobes provided higher detection sensitivity. This BQ-based western blot assay can achieve a wide dynamic range (from 7.8 to 4000 ng IgG) and is nearly as sensitive as commercial available ultrasensitive chemiluminescent methods, just using a simple gel imager with UV light (365 nm) excitation and red light filter (610 nm). The fluorescent signals of BQ western blot were stable for 10 min, while chemiluminescent signals faded after 1 min. Moreover, this BQ immunoprobe was utilized for the detection of housekeeping protein and specific target proteins in complex cell lysate samples. The limit of detection of housekeeping protein is 0.25 µg of cell lysate, and the signal intensities were proportional to loading protein amount in a wide range from 0.61 to 80 µg. We believe that this new strategy of bimodal size distribution nanoparticles can also be expanded for other functional nanoparticle-based biological assays to improve the sensitivity and extend the dynamic range. Graphical abstract.


Immunoassay/instrumentation , Limit of Detection , Luminescent Measurements/instrumentation , Nanoparticles , Quantum Dots , Blotting, Western , Fluorescent Dyes , Immunoassay/methods , Luminescent Measurements/methods
...