Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 25(10): 1760-1764, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36867548

RESUMEN

Quinolizidomycins A (1) and B (2), two unprecedented quinolizidine alkaloids featuring a tricyclic 6/6/5 ring system, were isolated from Streptomyces sp. KIB-1714. Their structures were assigned by detailed spectroscopic data analyses and X-ray diffraction. Stable isotope labeling experiments suggested that compounds 1 and 2 are derived from lysine, ribose 5-phosphate, and acetate units, which indicates an unprecedented manner of assembly of the quinolizidine (1-azabicyclo[4.4.0]decane) scaffold in quinolizidomycin biosynthesis. Quinolizidomycin A (1) was active in an acetylcholinesterase inhibitory assay.


Asunto(s)
Alcaloides , Streptomyces , Alcaloides de Quinolizidina , Alcaloides/química , Streptomyces/química , Acetilcolinesterasa , Estructura Molecular
2.
ACS Chem Biol ; 18(1): 102-111, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36623177

RESUMEN

Guvermectin is a novel plant growth regulator that has been registered as a new agrochemical in China. It is an adenosine analogue with an unusual psicofuranose instead of ribose. Herein, the gene cluster responsible for guvermectin biosynthesis in Streptomyces caniferus NEAU6 is identified using gene interruption and heterologous expression experiments. A key intermediate psicofuranine 6'-phosphate (PMP) is chemically synthesized, and the functions of GvmB, C, D, and E are verified by individual stepwise enzyme reactions in vitro. The results also show that the biosynthesis of guvermectin is coupled with adenosine production by a single cluster. The higher catalytic efficiency of GvmB on PMP than AMP ensures the effective biosynthesis of guvermectin. Moreover, a phosphoribohydrolase GvmA is employed in the pathway that can hydrolyze AMP but not PMP and shows higher catalytic efficiency for the AMP hydrolysis than that of the AMP dephosphorylation by GvmB, leading to shunting of adenosine biosynthesis toward the production of guvermectin. Finally, the crystal structure of GvmE in complex with the product PMP has been solved. Glu160 at the C-terminal is identified as the acid/base for protonation/deprotonation of N7 of the adenine ring, demonstrating that GvmE is a noncanonical adenine phosphoribosyltransferase.


Asunto(s)
Adenina Fosforribosiltransferasa , Ácido Glutámico , Adenina Fosforribosiltransferasa/química , Adenosina , Adenosina Monofosfato/química , Modelos Moleculares
3.
Nat Commun ; 14(1): 209, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639377

RESUMEN

Angiotensin-converting enzyme inhibitors are widely used for treatment of hypertension and related diseases. Here, six karnamicins E1-E6 (1-6), which bear fully substituted hydroxypyridine and thiazole moieties are characterized from the rare actinobacterium Lechevalieria rhizosphaerae NEAU-A2. Through a combination of isotopic labeling, genome mining, and enzymatic characterization studies, the programmed assembly of the fully substituted hydroxypyridine moiety in karnamicin is proposed to be due to sequential operation of a hybrid polyketide synthase-nonribosomal peptide synthetase, two regioselective pyridine ring flavoprotein hydroxylases, and a methyltransferase. Based on AlphaFold protein structures predictions, molecular docking, and site-directed mutagenesis, we find that two pyridine hydroxylases deploy active site residues distinct from other flavoprotein monooxygenases to direct the chemo- and regioselective hydroxylation of the pyridine nucleus. Pleasingly, karnamicins show significant angiotensin-converting enzyme inhibitory activity with IC50 values ranging from 0.24 to 5.81 µM, suggesting their potential use for the treatment of hypertension and related diseases.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antihipertensivos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Simulación del Acoplamiento Molecular , Piridinas , Oxigenasas de Función Mixta
4.
J Nat Prod ; 86(1): 176-181, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36634313

RESUMEN

Six new azoxy-aromatic compounds (o-alkylazoxymycins A-F, 1-6) and two new nitrogen-bearing phenylvaleric/phenylheptanoic acid derivatives (o-alkylphemycins A and B, 7 and 8) were isolated from Streptomyces sp. Py50. Their structures were elucidated based on HRESIMS, NMR, UV spectroscopic analyses, and X-ray crystallographic data. O-Alkylazoxymycins A-F (1-6) are the first natural examples of azoxy compounds with the azoxy bond attached to the ortho-position of the phenylheptanoic acid or phenylvaleric acid moiety. Compounds 1, 5, and 6 were active against Epidermophyton floccosum with MIC50 values ranging from 10.1 to 51.2 µM. A plausible biosynthetic pathway of 2 and 3 was proposed.


Asunto(s)
Streptomyces , Streptomyces/química , Espectroscopía de Resonancia Magnética , Compuestos Azo/química , Cristalografía por Rayos X , Vías Biosintéticas , Estructura Molecular
5.
J Am Chem Soc ; 144(48): 22000-22007, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36376019

RESUMEN

Cocaine, the archetypal tropane alkaloid from the plant genus Erythroxylum, has recently been used clinically as a topical anesthesia of the mucous membranes. Despite this, the key biosynthetic step of the requisite tropane skeleton (methylecgonone) from the identified intermediate 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid (MPOA) has remained, until this point, unknown. Herein, we identify two missing enzymes (EnCYP81AN15 and EnMT4) necessary for the biosynthesis of the tropane skeleton in cocaine by transient expression of the candidate genes in Nicotiana benthamiana. Cytochrome P450 EnCYP81AN15 was observed to selectively mediate the oxidative cyclization of S-MPOA to yield the unstable intermediate ecgonone, which was then methylated to form optically active methylecgonone by methyltransferase EnMT4 in Erythroxylum novogranatense. The establishment of this pathway corrects the long-standing (but incorrect) biosynthetic hypothesis of MPOA methylation first and oxidative cyclization second. Notably, the de novo reconstruction of cocaine was realized in N. benthamiana with the two newly identified genes, as well as four already known ones. This study not only reports a near-complete biosynthetic pathway of cocaine and provides new insights into the metabolic networks of tropane alkaloids (cocaine and hyoscyamine) in plants but also enables the heterologous synthesis of tropane alkaloids in other (micro)organisms, entailing significant implications for pharmaceutical production.


Asunto(s)
Cocaína , Vías Biosintéticas
6.
Beilstein J Org Chem ; 18: 1009-1016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051563

RESUMEN

Two novel diarylcyclopentenones daturamycin A and B (1 and 2), and one new p-terphenyl daturamycin C (3), along with three known congeners (4-6), were isolated from a rhizosphere soil-derived Streptomyces sp. KIB-H1544. The structures of new compounds were elucidated via a joint use of spectroscopic analyses and single-crystal X-ray diffractions. Compounds 1 and 2 belong to a rare class of tricyclic 6/5/6 diarylcyclopentenones, and compounds 3-6 possess a C-18 tricyclic aromatic skeleton. The biosynthetic gene cluster of daturamycins was identified through gene knockout and biochemical characterization experiments and the biosynthetic pathway of daturamycins was proposed.

7.
Nat Commun ; 13(1): 4994, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008484

RESUMEN

Tropane alkaloids such as hyoscyamine and cocaine are of importance in medicinal uses. Only recently has the hyoscyamine biosynthetic machinery become complete. However, the cocaine biosynthesis pathway remains only partially elucidated. Here we characterize polyketide synthases required for generating 3-oxo-glutaric acid from malonyl-CoA in cocaine biosynthetic route. Structural analysis shows that these two polyketide synthases adopt distinctly different active site architecture to catalyze the same reaction as pyrrolidine ketide synthase in hyoscyamine biosynthesis, revealing an unusual parallel/convergent evolution of biochemical function in homologous enzymes. Further phylogenetic analysis suggests lineage-specific acquisition of polyketide synthases required for tropane alkaloid biosynthesis in Erythroxylaceae and Solanaceae species, respectively. Overall, our work elucidates not only a key unknown step in cocaine biosynthesis pathway but also, more importantly, structural and biochemical basis for independent recruitment of polyketide synthases in tropane alkaloid biosynthesis, thus broadening the understanding of conservation and innovation of biosynthetic catalysts.


Asunto(s)
Cocaína , Hiosciamina , Filogenia , Sintasas Poliquetidas/metabolismo , Tropanos/metabolismo
8.
Angew Chem Int Ed Engl ; 61(37): e202208772, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35862137

RESUMEN

This study used light-mediated comparative transcriptomics to identify the biosynthetic gene cluster of beticolin 1 in Cercospora. It contains an anthraquinone moiety and an unusual halogenated xanthone moiety connected by a bicyclo[3.2.2]nonane. During elucidation of the biosynthetic pathway of beticolin 1, a novel non-heme iron oxygenase BTG13 responsible for anthraquinone ring cleavage was discovered. More importantly, the discovery of non-heme iron oxygenase BTG13 is well supported by experimental evidence: (i) crystal structure and the inductively coupled plasma mass spectrometry revealed that its reactive site is built by an atypical iron ion coordination, where the iron ion is uncommonly coordinated by four histidine residues, an unusual carboxylated-lysine (Kcx377) and water; (ii) Kcx377 is mediated by His58 and Thr299 to modulate the catalytic activity of BTG13. Therefore, we believed this study updates our knowledge of metalloenzymes.


Asunto(s)
Hierro , Oxigenasas , Antraquinonas , Vías Biosintéticas , Compuestos Heterocíclicos de 4 o más Anillos , Hierro/metabolismo , Micotoxinas , Oxigenasas/metabolismo
9.
Angew Chem Int Ed Engl ; 61(19): e202200189, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35191152

RESUMEN

Flavin-dependent enzymes enable a broad range of redox transformations and generally act as monofunctional and stereoselective catalysts. Herein, we report the investigation of a multifunctional and non-stereoselective FMN-dependent oxidoreductase RubE7 from the rubrolone biosynthetic pathway. Our study outlines a single RubE7-catalysed sequential reduction of three spatially distinct bonds in a tropolone ring and a reversible double-bond reduction and dehydrogenation. The crystal structure of IstO (a RubE7 homologue) with 2.0 Šresolution reveals the location of the active site at the interface of two monomers, and the size of active site is large enough to permit both flipping and free rotation of the substrate, resulting in multiple nonselective reduction reactions. Molecular docking and site mutation studies demonstrate that His106 is oriented towards the substrate and is important for the reverse dehydrogenation reaction.


Asunto(s)
Flavinas , Oxidorreductasas , Catálisis , Simulación del Acoplamiento Molecular , Oxidación-Reducción
10.
J Colloid Interface Sci ; 611: 503-512, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34971961

RESUMEN

MnCo2O4 is regarded as a good electrode material for supercapacitor due to its high specific capacity and good structural stability. However, its poor electrical conductivity limits its wide-range applications. To solve this issue, we integrated the MnCo2O4 with Ni3S4, which has a good electrical conductivity, and synthesized a MnCo2O4/Ni3S4 nanocomposite using a two-step hydrothermal process. Comparing with individual MnCo2O4 and Ni3S4, the MnCo2O4/Ni3S4 nanocomposite showed a higher specific capacity and a better cycling stability as the electrode for the supercapacitor. The specific capacity value of the MnCo2O4/Ni3S4 electrode was 904.7 C g-1 at 1 A g-1 with a potential window of 0-0.55 V. A hybrid supercapacitor (HSC), assembled using MnCo2O4/Ni3S4 and active carbon as the cathode and anode, respectively, showed a capacitance of 116.4 F g-1 at 1 A g-1, and a high energy density of 50.7 Wh kg-1 at 405.8 W kg-1. Long-term electrochemical stability tests showed an obvious increase of the HSC's capacitance after 5500 charge/discharge cycles, reached a maximum value of ∼162.7% of its initial value after 25,000 cycles, and then remained a stable value up to 64,000 cycles. Simultaneously, its energy density was increased to 54.2 Wh kg-1 at 380.3 W kg-1 after 64,000 cycles.

11.
Food Funct ; 12(11): 4897-4908, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34100502

RESUMEN

Myofibrillar protein accounting for about 60% of total muscle proteins is expected to be a promising source of bioactive peptides. The purpose of the present study was to purify antioxidant peptides from myofibrillar protein hydrolysate of chicken breast by ultrafiltration and gel filtration chromatography, and evaluate their chemical antioxidant activities and protective effects in H2O2-stressed NIH-3T3 cells. Four major peptides were identified using nano-LC-ESI-MS/MS as ITTNPYDY, IGWSPLGSL, ITTNPYDYHY, and LRVAPEEHPTL. The sequenced peptides were synthesized and exhibited remarkable radical-scavenging ability, ORAC (108.2-133.5 µM TE per mg peptide), and FRAP (75.4-92.5 mM Fe2+ per mg peptide). Structure-activity relationship indicated that the antioxidant capacity of the peptides was more related to the presence of hydrophobic and antioxidant amino acids (including Trp, Val, Ile, Leu, Ala, Pro, Gly, Asp, His, and Tyr) in the sequences as well as their molecular structures. Moreover, they protected NIH-3T3 cells against oxidative damage through inhibiting ROS generation and lipid peroxidation. Especially, the antioxidant peptides ITTNPYDY and IGWSPLGSL significantly (p < 0.05) elevated intracellular glutathione level and antioxidant enzyme activities, and suppressed apoptosis by blocking caspase-3 activation. This work highlights that the selected peptides may serve as functional food ingredients with antioxidant and cytoprotective characteristics.


Asunto(s)
Antioxidantes/química , Pollos/metabolismo , Péptidos/química , Hidrolisados de Proteína/química , Secuencia de Aminoácidos , Animales , Antioxidantes/aislamiento & purificación , Apoptosis , Supervivencia Celular , Fibroblastos , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Peroxidación de Lípido , Ratones , Células 3T3 NIH , Estrés Oxidativo , Capacidad de Absorbancia de Radicales de Oxígeno , Péptidos/aislamiento & purificación , Proteínas/metabolismo , Espectrometría de Masas en Tándem
12.
J Org Chem ; 86(16): 11198-11205, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-33855851

RESUMEN

Two heterocycle-fused cytochalasan homodimers, bisaspochalasins D (1) and E (2), were isolated from an endophytic Aspergillus flavipes. Their chemical structures were elucidated using a combination of HRESIMS, NMR, theoretical calculations, and crystallographic techniques. Bisaspochalasin D (1) is dimerized by the first reported naturally occurring triple heterobridged 3,8-dioxa-6-azabicyclo[3.2.1]octane framework, while bisaspochalasin E (2) employs a pyrrole ring as the linking moiety. Possible dimerization mechanisms of bisaspochalasins D and E were proposed. The bioassay screening revealed that bisaspochalasin D showed cytotoxic activities against five cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480) with IC50 values ranging from 4.45 to 22.99 µM. Additionally, bisaspochalasin D exhibited neurotrophic activities in a PC12 cell-based assay. At a concentration of 10 µM, bisaspochalasin D can promote neurite growth by inducing a differentiation rate of 12.52% for PC12 cells.


Asunto(s)
Aspergillus , Citocalasinas , Citocalasinas/farmacología , Células HL-60 , Humanos , Estructura Molecular
13.
Nat Prod Rep ; 38(9): 1634-1658, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-33533391

RESUMEN

Covering: 1917 to 2020Tropane alkaloids (TAs) are a remarkable class of plant secondary metabolites, which are characterized by an 8-azabicyclo[3.2.1]octane (nortropane) ring. Members of this class, such as hyoscyamine, scopolamine, and cocaine, are well known for their long history as poisons, hallucinogens, and anaesthetic agents. Since the structure of the tropane ring system was first elucidated in 1901, organic chemists and biochemists have been interested in how these mysterious tropane alkaloids are assembled in vitro and in vivo. However, it was only in 2020 that the complete biosynthetic route of hyoscyamine and scopolamine was clarified, and their de novo production in yeast was also achieved. The aim of this review is to present the innovative ideas and results in exploring the story of tropane alkaloid biosynthesis in plants from 1917 to 2020. This review also highlights that Robinson's classic synthesis of tropinone, which is one hundred years old, is biomimetic, and underscores the importance of total synthesis in the study of natural product biosynthesis.


Asunto(s)
Alcaloides/biosíntesis , Tropanos/metabolismo , Alcaloides/química , Productos Biológicos/metabolismo , Estructura Molecular , Tropanos/química
14.
Front Chem ; 9: 812564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087795

RESUMEN

During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid derivatives (2-7) and one known alkenoic acid derivative (1) were isolated from an endophytic fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR, 13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with previously reported literatures. Among them, fusariumesters C‒F (2-5) are bis-alkenoic acid derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D (7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar diffusion method. As a result, only compound 1 decorating with ß-lactone ring turned out to be active against these two tested fungi. The broth microdilution assay against Candida albicans showed the minimum inhibitory concentration (MIC) value of 1 to be 20 µg/ml, while the minimum inhibitory concentration value of the positive control (naystatin) was 10 µg/ml. And the half maximal inhibitory concentration (IC50) value (21.23 µg/ml) of 1 against Exserohilum turcicum was determined by analyzing its inhibition effect on the mycelial growth, using cycloheximide (IC50 = 46.70 µg/ml) as the positive control.

15.
Org Lett ; 22(20): 7930-7935, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33001654

RESUMEN

Three unprecedented cytochalasan homodimers, bisaspochalasins A-C (1-3), and two known monomers, aspochalasins B and D (4 and 5), were isolated from an endophytic Aspergillus flavipes. Bisaspochalasin A (1) contains a 13-hydroxy-3,24-dioxatricyclo[11.10.11,13.02,15]tetracos-4-one cross-linkage, representing an unprecedented carbon skeleton. Bisaspochalasins B (2) and C (3) share a thioether bridge, while 3 has a peroxy modification at C-7, which may be generated by Schenck-ene photooxygenation. Their structures, including their absolute configurations, were elucidated by HRESIMS, NMR, chemical transformation, and X-ray crystallography. Bisaspochalasin A showed inhibitory activity against human T cell proliferation with an IC50 value of 15.8 µM while maintaining low cytotoxicity to T cells.


Asunto(s)
Aspergillus/química , Citocalasinas/farmacología , Proliferación Celular/efectos de los fármacos , Citocalasinas/química , Citocalasinas/aislamiento & purificación , Dimerización , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular
16.
IEEE J Biomed Health Inform ; 24(12): 3551-3563, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32997638

RESUMEN

The novel coronavirus disease 2019 (COVID-19) pandemic has led to a worldwide crisis in public health. It is crucial we understand the epidemiological trends and impact of non-pharmacological interventions (NPIs), such as lockdowns for effective management of the disease and control of its spread. We develop and validate a novel intelligent computational model to predict epidemiological trends of COVID-19, with the model parameters enabling an evaluation of the impact of NPIs. By representing the number of daily confirmed cases (NDCC) as a time-series, we assume that, with or without NPIs, the pattern of the pandemic satisfies a series of Gaussian distributions according to the central limit theorem. The underlying pandemic trend is first extracted using a singular spectral analysis (SSA) technique, which decomposes the NDCC time series into the sum of a small number of independent and interpretable components such as a slow varying trend, oscillatory components and structureless noise. We then use a mixture of Gaussian fitting (GF) to derive a novel predictive model for the SSA extracted NDCC incidence trend, with the overall model termed SSA-GF. Our proposed model is shown to accurately predict the NDCC trend, peak daily cases, the length of the pandemic period, the total confirmed cases and the associated dates of the turning points on the cumulated NDCC curve. Further, the three key model parameters, specifically, the amplitude (alpha), mean (mu), and standard deviation (sigma) are linked to the underlying pandemic patterns, and enable a directly interpretable evaluation of the impact of NPIs, such as strict lockdowns and travel restrictions. The predictive model is validated using available data from China and South Korea, and new predictions are made, partially requiring future validation, for the cases of Italy, Spain, the UK and the USA. Comparative results demonstrate that the introduction of consistent control measures across countries can lead to development of similar parametric models, reflected in particular by relative variations in their underlying sigma, alpha and mu values. The paper concludes with a number of open questions and outlines future research directions.


Asunto(s)
Inteligencia Artificial , COVID-19/terapia , COVID-19/epidemiología , COVID-19/virología , Humanos , SARS-CoV-2/aislamiento & purificación , España/epidemiología
17.
Chin J Nat Med ; 18(9): 677-683, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32928511

RESUMEN

Inthomycins are polyketide antibiotics which contain a terminal carboxamide group and a triene chain. Inthomycin B (1) and its two new analogues 2 and 3 were isolated from the crude extract of Streptomyces pactum L8. Identification of the gene cluster for inthomycin biosynthesis as well as the 15N-labeled glycine incorporation into inthomycins are described. Combined with the gene deletion of the rare P450 domain in the NRPS module, a formation mechanism of carboxamide moiety in inthomycins was proposed via an oxidative release of the assembly chain assisted by the P450 domain.


Asunto(s)
Antibacterianos/biosíntesis , Ácidos Grasos Insaturados/biosíntesis , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/aislamiento & purificación , Genes Bacterianos , Estructura Molecular , Familia de Multigenes , Oxazoles/química , Oxazoles/aislamiento & purificación , Oxidación-Reducción , Streptomyces/química
18.
Food Funct ; 11(7): 6407-6421, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32613953

RESUMEN

The objective of this study was to investigate the effect of (-)-epigallocatechin (EGC; at 0, 10, and 100 µmol g-1 protein) coupled with sodium tripolyphosphate (STP) on the in vitro digestibility and emulsion gel properties of myofibrillar protein (MP) under oxidative stress. The addition of both EGC and STP inhibited protein carbonyl formation but promoted the loss of thiol and free amine groups. Combined with the results of tryptophan fluorescence, surface hydrophobicity, electrophoresis, and solubility, the presence of STP enhanced the covalent reactions between the quinone of EGC and the thiols and free amines of MP. The combination of EGC at 10 µmol g-1 and STP increased the protein digestion rate in the gastric tract and contributed to an improved emulsion gel structure with higher gel elasticity, strength, water-holding capacity, and oxidative stability. This improvement could be attributed to the moderation of MP-EGC cross-linking, which was homogeneously formed among the adsorbed and/or unadsorbed proteins. Thus, oil droplets adhered better to the gel matrix. However, EGC at 100 µmol g-1 coupled with STP led to the formation of excessive non-disulfide covalent bonds, which aggravated the aggregation of MP. This ultimately reduced the protein digestibility and the nutritional value, caused the coalescence of oil droplets as well as the collapse of the gel structure, and thus, an overall decrease in the gel properties and oxidative stability. These results indicated that the enhanced oxidative stability and gelling capacity of MP without nutrition deterioration can be attained through tripolyphosphate coupled with lower doses of EGC.


Asunto(s)
Catequina/análogos & derivados , Estrés Oxidativo , Polifosfatos/farmacología , Animales , Catequina/administración & dosificación , Catequina/farmacología , Pollos , Digestión , Combinación de Medicamentos , Emulsiones/química , Geles/química , Proteínas Musculares/química , Miofibrillas/química , Polifosfatos/administración & dosificación
19.
J Nat Prod ; 83(6): 1919-1924, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32519857

RESUMEN

Nine new pentacyclic polyketides, fasamycins G-K (1-5) and formicamycins N-Q (6-9), along with 10 known analogues (10-19), were isolated from a rhizospheric soil-derived Streptomyces sp. KIB-1414. Their structures and absolute configurations were elucidated by interpretation of NMR and HRMS data and comparisons of CD data. The compounds were active against methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Bacillus subtilis, and Escherichia coli strains, with MIC values ranging from 0.20 to 50.00 µg/mL.


Asunto(s)
Antibacterianos/farmacología , Policétidos/farmacología , Streptomyces/química , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Dicroismo Circular , Escherichia coli/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Policétidos/química , Microbiología del Suelo
20.
Microorganisms ; 8(1)2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948045

RESUMEN

The rhizosphere, an important battleground between beneficial microbes and pathogens, is usually considered to be a good source for isolation of antagonistic microorganisms. In this study, a novel actinobacteria with broad-spectrum antifungal activity, designated strain NEAU-H2T, was isolated from the rhizosphere soil of wheat (Triticum aestivum L.). 16S rRNA gene sequence similarity studies showed that strain NEAU-H2T belonged to the genus Streptomyces, with high sequence similarities to Streptomyces rhizosphaerihabitans NBRC 109807T (98.8%), Streptomyces populi A249T (98.6%), and Streptomyces siamensis NBRC 108799T (98.6%). Phylogenetic analysis based on 16S rRNA, atpD, gyrB, recA, rpoB, and trpB gene sequences showed that the strain formed a stable clade with S. populi A249T. Morphological and chemotaxonomic characteristics of the strain coincided with members of the genus Streptomyces. A combination of DNA-DNA hybridization results and phenotypic properties indicated that the strain could be distinguished from the abovementioned strains. Thus, strain NEAU-H2T belongs to a novel species in the genus Streptomyces, for which the name Streptomyces triticiradicis sp. nov. is proposed. In addition, the metabolites isolated from cultures of strain NEAU-H2T were characterized by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analyses. One new compound and three known congeners were isolated. Further, genome analysis revealed that the strain harbored diverse biosynthetic potential, and one cluster showing 63% similarity to natamycin biosynthetic gene cluster may contribute to the antifungal activity. The type strain is NEAU-H2T (= CCTCC AA 2018031T = DSM 109825T).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...