Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
2.
Bone Res ; 11(1): 13, 2023 Mar 03.
Article En | MEDLINE | ID: mdl-36869045

In the synovial joint, mechanical force creates an important signal that influences chondrocyte behavior. The conversion of mechanical signals into biochemical cues relies on different elements in mechanotransduction pathways and culminates in changes in chondrocyte phenotype and extracellular matrix composition/structure. Recently, several mechanosensors, the first responders to mechanical force, have been discovered. However, we still have limited knowledge about the downstream molecules that enact alterations in the gene expression profile during mechanotransduction signaling. Recently, estrogen receptor α (ERα) has been shown to modulate the chondrocyte response to mechanical loading through a ligand-independent mechanism, in line with previous research showing that ERα exerts important mechanotransduction effects on other cell types, such as osteoblasts. In consideration of these recent discoveries, the goal of this review is to position ERα into the mechanotransduction pathways known to date. Specifically, we first summarize our most recent understanding of the mechanotransduction pathways in chondrocytes on the basis of three categories of actors, namely mechanosensors, mechanotransducers, and mechanoimpactors. Then, the specific roles played by ERα in mediating the chondrocyte response to mechanical loading are discussed, and the potential interactions of ERα with other molecules in mechanotransduction pathways are explored. Finally, we propose several future research directions that may advance our understanding of the roles played by ERα in mediating biomechanical cues under physiological and pathological conditions.

3.
Biochem Biophys Res Commun ; 571: 8-13, 2021 09 24.
Article En | MEDLINE | ID: mdl-34298338

Rats have long been an ideal model for disease research in the field of biomedicine, but the bottleneck of in vitro culture of rat embryonic stem (ES) cells hindered the wide application as genetic disease models. Here, we optimized a special medium which we named 5N-medium for rat embryonic stem cells, which improved the in vitro cells with better morphology and higher pluripotency. We then established a drug selection schedule harboring a prior selection of 12 h that achieved a higher positive selection ratio. These treatments induced at least 50% increase of homologous recombination efficiency compared with conventional 2i culture condition. Moreover, the ratio of euploid ES clones also increased by 50% with a higher germline transmission rate. Finally, we successfully knocked in a 175 kb human Bacterial Artificial Chromosome (BAC) fragment to rat ES genome through recombinase mediated cassette exchange (RMCE). Hence, we provide a promising system for generating sophisticated rat models which could be benefit for biomedical researches.


Embryonic Stem Cells/cytology , Animals , Cell Proliferation , Cells, Cultured , Models, Animal , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley
4.
Acta Neuropathol Commun ; 9(1): 74, 2021 04 23.
Article En | MEDLINE | ID: mdl-33892818

INTRODUCTION: Traumatic brain injury (TBI) is considered as the most robust environmental risk factor for Alzheimer's disease (AD). Besides direct neuronal injury and neuroinflammation, vascular impairment is also a hallmark event of the pathological cascade after TBI. However, the vascular connection between TBI and subsequent AD pathogenesis remains underexplored. METHODS: In a closed-head mild TBI (mTBI) model in mice with controlled cortical impact, we examined the time courses of microvascular injury, blood-brain barrier (BBB) dysfunction, gliosis and motor function impairment in wild type C57BL/6 mice. We also evaluated the BBB integrity, amyloid pathology as well as cognitive functions after mTBI in the 5xFAD mouse model of AD. RESULTS: mTBI induced microvascular injury with BBB breakdown, pericyte loss, basement membrane alteration and cerebral blood flow reduction in mice, in which BBB breakdown preceded gliosis. More importantly, mTBI accelerated BBB leakage, amyloid pathology and cognitive impairment in the 5xFAD mice. DISCUSSION: Our data demonstrated that microvascular injury plays a key role in the pathogenesis of AD after mTBI. Therefore, restoring vascular functions might be beneficial for patients with mTBI, and potentially reduce the risk of developing AD.


Alzheimer Disease/pathology , Brain Concussion/pathology , Cognitive Dysfunction/pathology , Disease Progression , Microvessels/pathology , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Animals , Brain Concussion/complications , Brain Concussion/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
5.
Front Cell Infect Microbiol ; 11: 628887, 2021.
Article En | MEDLINE | ID: mdl-33718276

Viral interfering RNA (viRNA) has been identified from several viral genomes via directly deep RNA sequencing of the virus-infected cells, including zika virus (ZIKV). Once produced by endoribonuclease Dicer, viRNAs are loaded onto the Argonaute (AGO) family proteins of the RNA-induced silencing complexes (RISCs) to pair with their RNA targets and initiate the cleavage of target genes. However, the identities of functional ZIKV viRNAs and their viral RNA targets remain largely unknown. Our recent study has shown that ZIKV capsid protein interacted with Dicer and antagonized its endoribonuclease activity, which requires its histidine residue at the 41st amino acid. Accordingly, the engineered ZIKV-H41R loss-of-function (LOF) mutant virus no longer suppresses Dicer enzymatic activity nor inhibits miRNA biogenesis in NSCs. By combining AGO-associated RNA sequencing, deep sequencing analysis in ZIKV-infected human neural stem cells (NSCs), and miRanda target scanning, we defined 29 ZIKV derived viRNA profiles in NSCs, and established a complex interaction network between the viRNAs and their viral targets. More importantly, we found that viRNA production from the ZIKV mRNA is dependent on Dicer function and is a limiting factor for ZIKV virulence in NSCs. As a result, much higher levels of viRNAs generated from the ZIKV-H41R virus-infected NSCs. Therefore, our mapping of viRNAs to their RNA targets paves a way to further investigate how viRNAs play the role in anti-viral mechanisms, and perhaps other unknown biological functions.


Neural Stem Cells , Zika Virus Infection , Zika Virus , Humans , RNA, Small Interfering , RNA, Viral , Satellite Viruses , Virus Replication
6.
Cell Stem Cell ; 27(4): 618-632.e9, 2020 10 01.
Article En | MEDLINE | ID: mdl-32763144

Zika virus (ZIKV) causes microcephaly and disrupts neurogenesis. Dicer-mediated miRNA biogenesis is required for embryonic brain development and has been suggested to be disrupted upon ZIKV infection. Here we mapped the ZIKV-host interactome in neural stem cells (NSCs) and found that Dicer is specifically targeted by the capsid from ZIKV, but not other flaviviruses, to facilitate ZIKV infection. We identified a capsid mutant (H41R) that loses this interaction and does not suppress Dicer activity. Consistently, ZIKV-H41R is less virulent and does not inhibit neurogenesis in vitro or corticogenesis in utero. Epidemic ZIKV strains contain capsid mutations that increase Dicer binding affinity and enhance pathogenicity. ZIKV-infected NSCs show global dampening of miRNA production, including key miRNAs linked to neurogenesis, which is not observed after ZIKV-H41R infection. Together these findings show that capsid-dependent suppression of Dicer is a major determinant of ZIKV immune evasion and pathogenesis and may underlie ZIKV-related microcephaly.


MicroRNAs , Microcephaly , Zika Virus Infection , Zika Virus , Capsid , Humans , MicroRNAs/genetics , Microcephaly/genetics
7.
Genesis ; 54(9): 490-6, 2016 09.
Article En | MEDLINE | ID: mdl-27381449

Pax9 encodes a paired-box homeodomain (Pax) transcription factor and is critical for the development of multiple organs. Using CrispR/Cas9-mediated homologous directed repair (HDR), we generated a new Pax9-CreER knock-in mouse line in which the CreER(T2) fusion protein is produced after synthesis of endogenous Pax9 protein. We found that tdTomato reporter expression in Pax9-CreER;tdTomato reporter mice is detectable in a similar pattern to the endogenous Pax9 expression, faithfully recapitulating the Pax9 expression domains throughout the embryo and in the adult mouse. At early embryonic stages, the tdTomato reporter is expressed first in the pharyngeal pouch region and later in the craniofacial mesenchyme, somites, limbs, and lingual papillae in the adult tongue. These results demonstrate that this new Pax9-CreER knock-in mouse line can be used for lineage tracing and genetic targeting of Pax9-expressing cells and their progeny in a temporally and spatially controlled manner during development and organogenesis.


CRISPR-Cas Systems , Gene Knock-In Techniques/methods , Animals , Integrases/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , PAX9 Transcription Factor/genetics , Tamoxifen/pharmacology , Transcriptional Activation/drug effects , Red Fluorescent Protein
8.
Sci Rep ; 6: 21918, 2016 Feb 22.
Article En | MEDLINE | ID: mdl-26898344

Chromosomal translocation is the most common form of chromosomal abnormality and is often associated with congenital genetic disorders, infertility, and cancers. The lack of cellular and animal models for chromosomal translocations, however, has hampered our ability to understand the underlying disease mechanisms and to develop new therapies. Here, we show that site-specific chromosomal translocations can be generated in mouse embryonic stem cells (mESCs) via CRISPR/Cas9. Mouse ESCs carrying translocated chromosomes can be isolated and expanded to establish stable cell lines. Furthermore, chimeric mice can be generated by injecting these mESCs into host blastocysts. The establishment of ESC-based cellular and animal models of chromosomal translocation by CRISPR/Cas9 provides a powerful platform for understanding the effect of chromosomal translocation and for the development of new therapeutic strategies.


CRISPR-Cas Systems , Embryonic Stem Cells , Translocation, Genetic , Animals , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Mice , Mice, Transgenic , Models, Animal , Models, Genetic
9.
Nature ; 467(7312): 211-3, 2010 Sep 09.
Article En | MEDLINE | ID: mdl-20703227

The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models. Application of this technology to engineer genes in rats has not previously been possible because of the absence of germline-competent ES cells in this species. We have recently established authentic rat ES cells. Here we report the generation of gene knockout rats using the ES-cell-based gene targeting technology. We designed a targeting vector to disrupt the tumour suppressor gene p53 (also known as Tp53) in rat ES cells by means of homologous recombination. p53 gene-targeted rat ES cells can be routinely generated. Furthermore, the p53 gene-targeted mutation in the rat ES-cell genome can transmit through the germ line via ES-cell rat chimaeras to create p53 gene knockout rats. The rat is the most widely used animal model in biological research. The establishment of gene targeting technology in rat ES cells, in combination with advances in genomics and the vast amount of research data on physiology and pharmacology in this species, now provide a powerful new platform for the study of human disease.


Embryonic Stem Cells/cytology , Gene Knockout Techniques/methods , Genes, p53 , Rats/genetics , Animals , Base Sequence , Cell Culture Techniques , Embryo, Mammalian/cytology , Female , Germ-Line Mutation , Male , Mice , Molecular Sequence Data , Rats, Inbred F344 , Rats, Sprague-Dawley , Recombination, Genetic
10.
Cell ; 135(7): 1299-310, 2008 Dec 26.
Article En | MEDLINE | ID: mdl-19109898

Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. The lack of rat embryonic stem (ES) cells has restricted the availability of transgenic technologies to create genetic models in this species. Here, we show that rat ES cells can be efficiently derived, propagated, and genetically manipulated in the presence of small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. These rat ES cells express pluripotency markers and retain the capacity to differentiate into derivatives of all three germ layers. Most importantly, they can produce high rates of chimerism when reintroduced into early stage embryos and can transmit through the germline. Establishment of authentic rat ES cells will make possible sophisticated genetic manipulation to create models for the study of human diseases.


Blastocyst/cytology , Embryonic Stem Cells/cytology , Animals , Cell Culture Techniques , Cell Differentiation , Chimera , Epigenesis, Genetic , Female , Fibroblast Growth Factors/antagonists & inhibitors , Glycogen Synthase Kinases/antagonists & inhibitors , Male , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Rats , Rats, Inbred Strains , Signal Transduction
...