Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 254: 119152, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754612

RESUMEN

Several soil functions of alpine wetland depend on microbial communities, including carbon storage and nutrient cycling, and soil microbes are highly sensitive to hydrological conditions. Wetland degradation is often accompanied by a decline in water table. With the water table drawdown, the effects of microbial network complexity on various soil functions remain insufficiently understood. In this research, we quantified soil multifunctionality of flooded and non-flooded sites in the Lalu Wetland on the Tibetan Plateau. We employed high-throughput sequencing to investigate the microbial community responses to water table depth changes, as well as the relationships between microbial network properties and soil multifunctionality. Our findings revealed a substantial reduction in soil multifunctionality at both surface and subsurface soil layers (0-20 cm and 20-40 cm) in non-flooded sites compared to flooded sites. The α-diversity of bacteria in the surface soil of non-flooded sites was significantly lower than that in flooded sites. Microbial network properties (including the number of nodes, number of edges, average degree, density, and modularity of co-occurrence networks) exhibited significant correlations with soil multifunctionality. This study underscores the adverse impact of non-flooded conditions resulting from water table drawdown on soil multifunctionality in alpine wetland soils, driven by alterations in microbial community structure. Additionally, we identified soil pH and moisture content as pivotal abiotic factors influencing soil multifunctionality, with microbial network complexity emerging as a valuable predictor of multifunctionality.


Asunto(s)
Microbiología del Suelo , Humedales , Microbiota , Suelo/química , Tibet , Agua Subterránea/microbiología , Agua Subterránea/química , Bacterias , Inundaciones
2.
Front Microbiol ; 15: 1375300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559350

RESUMEN

Drought and nitrogen deposition are two major climate challenges, which can change the soil microbial community composition and ecological strategy and affect soil heterotrophic respiration (Rh). However, the combined effects of microbial community composition, microbial life strategies, and extracellular enzymes on the dynamics of Rh under drought and nitrogen deposition conditions remain unclear. Here, we experimented with an alpine swamp meadow to simulate drought (50% reduction in precipitation) and multilevel addition of nitrogen to determine the interactive effects of microbial community composition, microbial life strategy, and extracellular enzymes on Rh. The results showed that drought significantly reduced the seasonal mean Rh by 40.07%, and increased the Rh to soil respiration ratio by 22.04%. Drought significantly altered microbial community composition. The ratio of K- to r-selected bacteria (BK:r) and fungi (FK:r) increased by 20 and 91.43%, respectively. Drought increased hydrolase activities but decreased oxidase activities. However, adding N had no significant effect on microbial community composition, BK:r, FK:r, extracellular enzymes, or Rh. A structural equation model showed that the effects of drought and adding nitrogen via microbial community composition, microbial life strategy, and extracellular enzymes explained 84% of the variation in Rh. Oxidase activities decreased with BK:r, but increased with FK:r. Our findings show that drought decreased Rh primarily by inhibiting oxidase activities, which is induced by bacterial shifts from the r-strategy to the K-strategy. Our results highlight that the indirect regulation of drought on the carbon cycle through the dynamic of bacterial and fungal life history strategy should be considered for a better understanding of how terrestrial ecosystems respond to future climate change.

3.
Sci Total Environ ; 898: 165525, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451456

RESUMEN

Alpine peatlands are recognized as a weak or negligible source of nitrous oxide (N2O). Anthropogenic activities and climate change resulted in the altered water table (WT) levels and increased nitrogen (N) deposition, which could potentially transition this habitat into a N2O emission hotspot. However, the underlying mechanism related with the effects is still uncertain. Hence, we conducted a mesocosm experiment to address the response of growing-season N2O emissions and the gene abundances of nitrification (bacterial amoA) and denitrification (narG, nirS, norB and nosZ) to the increased N deposition (20 kg N ha-1 yr-1) at two WT levels (WT-30, 30 cm below soil surface; WT10, 10 cm above soil surface) in the Zoige alpine peatland, Qinghai-Tibetan Plateau. The results showed that the WT did not affect N2O emissions, and this was attributed with the limitation of soil NO3-. The higher WT level increased denitrification (narG and nirS gene abundance) resulting in the depletion of soil NO3-, but the consequent NO3- deficiency further limited denitrification, while the WT did not affect nitrification (bacterial amoA gene abundance). Meanwhile, the N deposition increased N2O emissions, regardless of WT levels. This was associated with the N-deposition induced increase in denitrification-related gene abundances of narG, nirS, norB and nosZ at WT-30 and narG at WT10. Additionally, the N2O emission factor assigned to N deposition was 1.3 % at WT-30 and 0.9 % at WT10, respectively. Our study provided comprehensive understanding of the mechanisms referring N2O emissions in response to the interactions between climate change and human disturbance from this high-altitude peatland.


Asunto(s)
Desnitrificación , Óxido Nitroso , Humanos , Óxido Nitroso/análisis , Nitrógeno , Microbiología del Suelo , Nitrificación , Suelo
4.
Front Plant Sci ; 13: 1000558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311073

RESUMEN

Alpine meadow plays vital roles in regional animal husbandry and the ecological environment. However, different grassland managements affect the structure and function of the alpine meadow. In this study, we selected three typical grassland managements including free grazing, enclosure, and artificial grass planting and conducted a field survey to study the effects of grassland managements on carbon fluxes in an alpine meadow. The carbon fluxes were observed by static chamber and environmental factors including vegetation and soil characteristics were measured simultaneously. Our results show that the alpine meadow was a CO2 and CH4 sink, and grassland managements had a significant effect on all CO2 fluxes, including gross ecosystem production (GEP, P< 0.001), net ecosystem production (NEP, P< 0.001) and ecosystem respiration (ER, P< 0.001) but had no significant effect on CH4 fluxes (P > 0.05). The ranking of GEP under the different grassland managements was enclosure > free grazing > artificial grass planting. Furthermore, NEP and ER at enclosure plots were significantly higher than those of the free grazing and artificial grass planting plots. In addition, different grassland managements also affected the vegetation and soil characteristics of the alpine meadow. The aboveground biomass of artificial grass planting was significantly higher than that of the free grazing and enclosure plots. The vegetation coverage under three different grassland managements was ranked in the order of enclosure > artificial grass planting > free grazing and significant differences were observed among them. Moreover, significant differences in the number of species (P< 0.01) and the Margalef richness index (P< 0.05) were detected under three different grassland managements. Further analysis of the relationship between environmental factors and carbon fluxes revealed that GEP and NEP of the alpine meadow were positively correlated with vegetation coverage, the number of species, and the Margalef richness index. Therefore, grassland restoration should be configured with multiple species, which could improve carbon sink capacity while considering the functions of grassland restoration and production.

5.
Front Plant Sci ; 13: 986034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160969

RESUMEN

Soil microbial communities are crucial in ecosystem-level decomposition and nutrient cycling processes and are sensitive to climate change in peatlands. However, the response of the vertical distribution of microbial communities to warming remains unclear in the alpine peatland. In this study, we examined the effects of warming on the vertical pattern and assembly of soil bacterial and fungal communities across three soil layers (0-10, 10-20, and 20-30 cm) in the Zoige alpine peatland under a warming treatment. Our results showed that short-term warming had no significant effects on the alpha diversity of either the bacterial or the fungal community. Although the bacterial community in the lower layers became more similar as soil temperature increased, the difference in the vertical structure of the bacterial community among different treatments was not significant. In contrast, the vertical structure of the fungal community was significantly affected by warming. The main ecological process driving the vertical assembly of the bacterial community was the niche-based process in all treatments, while soil carbon and nutrients were the main driving factors. The vertical structure of the fungal community was driven by a dispersal-based process in control plots, while the niche and dispersal processes jointly regulated the fungal communities in the warming plots. Plant biomass was significantly related to the vertical structure of the fungal community under the warming treatments. The variation in pH was significantly correlated with the assembly of the bacterial community, while soil water content, microbial biomass carbon/microbial biomass phosphorous (MBC/MBP), and microbial biomass nitrogen/ microbial biomass phosphorous (MBN/MBP) were significantly correlated with the assembly of the fungal community. These results indicate that the vertical structure and assembly of the soil bacterial and fungal communities responded differently to warming and could provide a potential mechanism of microbial community assembly in the alpine peatland in response to warming.

6.
Front Microbiol ; 13: 824267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185848

RESUMEN

Soil microbes are important components in element cycling and nutrient supply for the development of alpine ecosystems. However, the development of microbial community compositions and networks in the context of alpine wetland degradation is unclear. We applied high-throughput 16S rRNA gene amplicon sequencing to track changes in microbial communities along degradation gradients from typical alpine wetland (W), to wet meadow (WM), to typical meadow (M), to grassland (G), and to desert (D) in the Zoige alpine wetland region on the Tibetan Plateau. Soil water content (SWC) decreased as wetland degradation progressed (79.4 and 9.3% in W and D soils, respectively). Total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) increased in the soils of WM, and then decreased with alpine wetlands degradation from WM to the soils of M, G, and D, respectively. Wetland degradation did not affect microbial community richness and diversity from W soils to WM, M, and G soils, but did affect richness and diversity in D soils. Microbial community structure was strongly affected by wetland degradation, mainly due to changes in SWC, TOC, TN, and TP. SWC was the primary soil physicochemical property influencing microbial community compositions and networks. In wetland degradation areas, Actinobacteriota, Acidobacteriota, Cholorflexi, and Proteovacteria closely interacted in the microbial network. Compared to soils of W, WM, and M, Actinobacteriota played an important role in the microbial co-occurrence network of the G and D soils. This research contributes to our understanding of how microbial community composition and networks change with varied soil properties during degradation of different alpine wetlands.

7.
Sci Total Environ ; 808: 152140, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34864035

RESUMEN

Alpine meadows on the Qinghai-Tibetan Plateau are sensitive to climate change. The precipitation regime in this region has undergone major changes, "repackaging" precipitation from more frequent, smaller events to less frequent, larger events. Nitrous oxide (N2O) is an important indicator of responses to global change in alpine meadow ecosystems. However, little information is available describing the mechanisms driving the response of N2O emissions to changes in the precipitation regime. In this study, a manipulative field experiment was conducted to investigate N2O flux, soil properties, enzyme activity, and gene abundance in response to severe and moderate changes in precipitation regime over two years. Severe changes in precipitation regime led to a 12.6-fold increase in N2O fluxes (0.0068 ± 0.0018 mg m-2 h-1) from Zoige alpine meadows relative to natural conditions (0.0005 ± 0.0029 mg m-2 h-1). In addition, severe changes in precipitation regime significantly suppressed the activities of leucine amino peptidase (LAP) and peroxidase (PEO), affected ecoenzymatic stoichiometry, and increased the abundances of gdhA, narI and nirK genes, which significantly promoted organic nitrogen (N) decomposition, denitrification, and anammox processes. The increase in abundance of these genes could be ascribed to changes in the abundance of several dominant bacterial taxa (i.e., Actinobacteria and Proteobacteria) as a result of the altered precipitation regime. Decreases in nitrate and soil moisture caused by severe changes in precipitation may exacerbate N limitation and water deficit, lead to a suppression of soil enzyme activity, and change the structure of microorganism community. The N cycle of the alpine meadow ecosystem may accelerate by increasing the abundance of key N functional genes. This would, in turn, lead to increased N2O emission. This study provided insights into how precipitation regimes changes affect N cycling, and may also improve prediction of N2O fluxes in response to changes in precipitation regime.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Ecosistema , Aceleración , Óxido Nitroso/análisis , Suelo , Microbiología del Suelo
8.
ISME Commun ; 2(1): 115, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37938678

RESUMEN

Peatlands act as an important sink of carbon dioxide (CO2). Yet, they are highly sensitive to climate change, especially to extreme drought. The changes in the net ecosystem CO2 exchange (NEE) under extreme drought events, and the driving function of microbial enzymatic genes involved in soil organic matter (SOM) decomposition, are still unclear. Herein we investigated the effects of extreme drought events in different periods of plant growth season at Zoige peatland on NEE and microbial enzymatic genes of SOM decomposition after 5 years. The results showed that the NEE of peatland decreased significantly by 48% and 26% on average (n = 12, P < 0.05) under the early and midterm extreme drought, respectively. The microbial enzymatic genes abundance of SOM decomposition showed the same decreasing trend under early and midterm extreme drought, but an increasing trend under late extreme drought. The microbial community that contributes to these degradation genes mainly derives from Proteobacteria and Actinobacteria. NEE was mainly affected by soil hydrothermal factors and gross primary productivity but weakly correlated with SOM enzymatic decomposition genes. Soil microbial respiration showed a positive correlation with microbial enzymatic genes involved in the decomposition of labile carbon (n = 18, P < 0.05). This study provided new insights into the responses of the microbial decomposition potential of SOM and ecosystem CO2 sink function to extreme drought events in the alpine peatland.

9.
Front Plant Sci ; 12: 756956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721486

RESUMEN

Increasing attention has been given to the impact of extreme drought stress on ecosystem ecological processes. Ecosystem respiration (Re) and soil respiration (Rs) play a significant role in the regulation of the carbon (C) balance because they are two of the largest terrestrial C fluxes in the atmosphere. However, the responses of Re and Rs to extreme drought in alpine regions are still unclear, particularly with respect to the driver mechanism in plant and soil extracellular enzyme activities. In this study, we imposed three periods of extreme drought events based on field experiments on an alpine peatland: (1) early drought, in which the early stage of plant growth occurred from June 18 to July 20; (2) midterm drought, in which the peak growth period occurred from July 20 to August 23; and (3) late drought, in which the wilting period of plants occurred from August 23 to September 25. After 5 years of continuous extreme drought events, Re exhibited a consistent decreasing trend under the three periods of extreme drought, while Rs exhibited a non-significant decreasing trend in the early and midterm drought but increased significantly by 58.48% (p < 0.05) during the late drought compared with the ambient control. Plant coverage significantly increased by 79.3% (p < 0.05) in the early drought, and standing biomass significantly decreased by 18.33% (p < 0.05) in the midterm drought. Alkaline phosphatase, polyphenol oxidase, and peroxidase increased significantly by 76.46, 77.66, and 109.60% (p < 0.05), respectively, under late drought. Structural equation models demonstrated that soil water content (SWC), pH, plant coverage, plant standing biomass, soil ß-D-cellobiosidase, and ß-1,4-N-acetyl-glucosaminidase were crucial impact factors that eventually led to a decreasing trend in Re, and SWC, pH, ß-1,4-glucosidase (BG), ß-1,4-xylosidase (BX), polyphenol oxidase, soil organic carbon, microbial biomass carbon, and dissolved organic carbon were crucial impact factors that resulted in changes in Rs. Our results emphasize the key roles of plant and soil extracellular enzyme activities in regulating the different responses of Re and Rs under extreme drought events occurring at different plant growth stages.

10.
Sci Total Environ ; 801: 149604, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34467923

RESUMEN

Carbon fluxes (CO2 and CH4) are important indicators of the response of alpine meadow ecosystems to global climate change. Alpine meadows on the Qinghai-Tibet Plateau are sensitive to climate change. Although the temporal allocation of precipitation can vary, its intensity is expected to increase, and its frequency is expected to decrease in the future. In this study, a manipulative field experiment was conducted to investigate how carbon fluxes are altered in response to moderate and severe changes in the precipitation regime. Fluctuations in CH4 flux were large under a severely altered precipitation regime (range of -0.048-0.038 mg m-2 h-1). Severe changes in the precipitation regime significantly reduced soil CH4 uptake by approximately 54.3%. This was probably affected by the decrease in the dissolved organic carbon concentration and changes in the microbial community (mainly Gammaproteobacteria), which were induced by variation in soil water conditions under various precipitation regimes. Under moderate changes in the precipitation regime, the average value of CO2 fluxes (ecosystem respiration) was 698.21 ± 35.19 mg m-2 h-1, which was significantly decreased by 20.7% compared with the control. This likely stems from the suppression of enzyme activity (particularly α-1,4-glucosidase and ß-1,4-glucosidase) and the alteration of microbial community structure in this treatment, which led to a decrease in organic matter breakdown and a reduction in the release of CO2 to the atmosphere. However, CO2 fluxes were slightly (i.e., not significantly) decreased under the severely altered precipitation regime. Such different responses of CO2 flux are probably driven by differences in microbial strategies. This study not only increases our understanding of the mechanisms underlying the adaptation of alpine meadow ecosystems to global climate change but also provides new insight into the carbon source/sink functions of alpine meadows.


Asunto(s)
Microbiota , Suelo , Dióxido de Carbono/análisis , Ecosistema , Pradera , Tibet
11.
PeerJ ; 8: e8874, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274271

RESUMEN

Accurate estimation of CH4 fluxes in alpine peatland of the Qinghai-Tibetan Plateau under extreme drought is vital for understanding the global carbon cycle and predicting future climate change. However, studies on the impacts of extreme drought on peatland CH4 fluxes are limited. To study the effects of extreme drought on CH4 fluxes of the Zoige alpine peatland ecosystem, the CH4 fluxes during both extreme drought treatment (D) and control treatment (CK) were monitored using a static enclosed chamber in a control platform of extreme drought. The results showed that extreme drought significantly decreased CH4 fluxes in the Zoige alpine peatland by 31.54% (P < 0.05). Extreme drought significantly reduced the soil water content (SWC) (P < 0.05), but had no significant effect on soil temperature (Ts). Under extreme drought and control treatments, there was a significant negative correlation between CH4 fluxes and environmental factors (Ts and SWC), except Ts, at a depth of 5cm (P < 0.05). Extreme drought reduced the correlation between CH4 fluxes and environmental factors and significantly weakened the sensitivity of CH4 fluxes to SWC (P < 0.01). Moreover, it was found that the correlation between subsoil (20 cm) environmental factors and CH4 fluxes was higher than with the topsoil (5, 10 cm) environmental factors under the control and extreme drought treatments. These results provide a better understanding of the extreme drought effects on CH4 fluxes of alpine peatland, and their hydrothermal impact factors, which provides a reliable reference for peatland protection and management.

12.
Diabetes Ther ; 11(2): 569-570, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31865611

RESUMEN

In the original article, there was some error in Table 2. The correct table is given below.

13.
Diabetes Ther ; 11(1): 71-81, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31673971

RESUMEN

INTRODUCTION: Small fiber neuropathy (SFN)-the early stage of diabetic peripheral neuropathy (DPN)-progresses gradually and is difficult to diagnose using neurophysiological tests. To facilitate the early diagnosis of SFN, biomarkers for SFN must be identified. The purpose of this study was to investigate the characteristics of SFN in prediabetic patients and the relationship between pNF-H and SFN. METHODS: 44 IGT patients (inpatients and outpatients) were selected at random. 33 healthy subjects served as controls. Data on clinical characteristics and laboratory parameters were collected. Quantitative sensory testing (QST), electromyography (EMG), and Sudoscan were performed, and pNF-H was measured by ELISA. RESULTS: 24 of the 44 patients with impaired glucose tolerance (IGT) were diagnosed with SFN according to the modified Toronto Diabetic Neuropathy Expert Group consensus criteria. The thermal sensory thresholds of the IGT-SFN group were significantly different from those of the CTRL group (p < 0.05), except for the heat pain threshold. The sensory nerve action potential (SNAP) of the sural nerve was 12.39 in the IGT-SFN group, which was significantly lower than those in the other groups. No significant difference in nerve conduction velocity (NCV) was observed among the three groups. The electrochemical skin conductance (ESC) in the IGT-SFN group was 69.78 ± 14.03uS, which was significantly lower than that in the CTRL group. The pNF-H in the IGT-SFN group was 170.6 (140.0, 223.6) pg/ml, which was significantly higher than those in the CTRL and IGT-non-SFN groups (76.55 and 64.7 pg/ml, respectively). Multivariate regression analysis demonstrated that pNF-H and 2h plasma glucose were independently correlated with SFN; the ORs (95% CI) were 1.429 (1.315, 1.924) and 2.375 (1.157, 4.837), respectively. CONCLUSIONS: Serum pNF-H may be associated with SFN in IGT patients, and serum pNF-H could therefore serve as a sensitive biomarker for the detection of SFN.

14.
PLoS One ; 14(1): e0210768, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30640931

RESUMEN

Coastal wetlands are considered as a significant sink of global carbon due to their tremendous organic carbon storage. Coastal CO2 and CH4 flux rates play an important role in regulating atmospheric CO2 and CH4 concentrations. However, the relative contributions of vegetation, soil properties, and spatial structure on dry-season ecosystem carbon (C) rates (net ecosystem CO2 exchange, NEE; ecosystem respiration, ER; gross ecosystem productivity, GEP; and CH4) remain unclear at a regional scale. Here, we compared dry-season ecosystem C rates, plant, and soil properties across three vegetation types from 13 locations at a regional scale in the Yellow River Delta (YRD). The results showed that the Phragmites australis stand had the greatest NEE (-1365.4 µmol m-2 s-1), ER (660.2 µmol m-2 s-1), GEP (-2025.5 µmol m-2 s-1) and acted as a CH4 source (0.27 µmol m-2 s-1), whereas the Suaeda heteroptera and Tamarix chinensis stands uptook CH4 (-0.02 to -0.12 µmol m-2 s-1). Stepwise multiple regression analysis demonstrated that plant biomass was the main factor explaining all of the investigated carbon rates (GEP, ER, NEE, and CH4); while soil organic carbon was shown to be the most important for explaining the variability in the processes of carbon release to the atmosphere, i.e., ER and CH4. Variation partitioning results showed that vegetation and soil properties played equally important roles in shaping the pattern of C rates in the YRD. These results provide a better understanding of the link between ecosystem C rates and environmental drivers, and provide a framework to predict regional-scale ecosystem C fluxes under future climate change.


Asunto(s)
Ciclo del Carbono , Plantas/metabolismo , Suelo/química , Humedales , Biomasa , Dióxido de Carbono , Chenopodiaceae/metabolismo , China , Cambio Climático , Ecosistema , Metano , Poaceae/metabolismo , Ríos , Tamaricaceae/metabolismo
15.
Huan Jing Ke Xue ; 39(4): 1934-1942, 2018 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-29965021

RESUMEN

The responses of soil respiration to exogenous carbon (C) and nitrogen (N) inputs under changing precipitation patterns were explored via in-situ field experiments. In 2014, a typical temperate grassland on the Xilin River of Inner Mongolia was taken as the research site, and soil respiration was measured in the following treatments:addition of water alone (CK), addition of water + N fertilizer[CN, 2.5 g·(m2·a)-1], addition of water + labile C[CG, 24 g·(m2·a)-1], and addition of water + N fertilizer+ labile C[CNG, 2.5 g·(m2·a)-1+24 g·(m2·a) -1], and the correlations of soil respiration with soil temperature, soil moisture, soil dissolved organic C (DOC), and soil microbial biomass C (MBC) were analyzed. During the first water application event (FWE) with the frequency of natural precipitation, cumulative CO2 efflux over 168 hours significantly increased in the CG and CNG treatments, whereas there was no such change in the CN treatment. In addition, soil MBC contents in the CG and CNG treatments were significantly higher than that in the CK and CN treatments, and the correlation of average soil respiration rate with soil MBC content among these treatments was positively significant (P<0.05). In contrast with during the FWE, cumulative CO2 efflux over 168 hours and soil MBC content significantly decreased during the second water application event (SWE) with no natural precipitation (P<0.05), whereas soil DOC content significantly increased (P<0.05). The cumulative CO2 efflux over 168 hours significantly decreases in the CN and CG treatments (P<0.05).During both the water application events, soil respiration rate had a positive relationship with soil temperature and soil volume water content (P<0.05). Therefore, it is proposed that the distribution of natural precipitation influences soil water content, which controls the effects of exogenous C and N on soil respiration in semiarid grassland ecosystems.


Asunto(s)
Carbono/química , Pradera , Nitrógeno/química , Microbiología del Suelo , Suelo/química , China
16.
Huan Jing Ke Xue ; 37(5): 1880-90, 2016 May 15.
Artículo en Chino | MEDLINE | ID: mdl-27506044

RESUMEN

The water-saving irrigation is the trend of modernized agriculture. This paper aimed to study the effect of water-saving irrigation on soil CO2 and N2O emissions. The field experiments were conducted under micro sprinkler irrigation of integrated water and fertilizer (MSI) and conventional flooding irrigation (FI) in winter wheat growth season in the west of North China Plain during 2013- 2014 using the static chamber method. This paper analyzed the seasonal variation of soil CO2and N2O emissions under MSI and FI, and then compared the soil CO2 and N2O emissions from treatments located in different vertical distance away from micro sprinkler pipe. Root exclusion was used to estimate the components of soil respiration and agricultural carbon sequestration intensity under MSI and FI in winter wheat field. The results indicated that: (1) The average soil CO2 emissions under MSI and FI were 418.19 mg (m² · h)⁻¹ and 372.14 mg · (m² · h)⁻¹ respectively with no significant difference, and cumulative CO2 emissions under MSI and FI were 2 150.6 g · m⁻² and 1 904.6 g · m⁻², respectively. (2) During returning green stage to harvest stage of winter wheat, the highest soil CO2 cumulative emissions were found at the closest site to the micro sprinkler irrigated pipes under MSI. However, there were no significant differences among spatial treatments. (3) Under MSI and FI, soil heterotrophic respiration (C) was 468.49 g · m⁻² and 427.31 g · m⁻², and the net primary productivity (3) was 1988.21 g · m⁻² and 1770.54 g · m⁻²; the carbon sink (C) during winter wheat growing season was 1 519.72 g · m⁻² and 1 343.24 g · m⁻², respectively. (4) The average N2O emissions under MSI and FI were 50.77 µg · (m² · h)⁻¹ and 28.81 µg · (m² · h)⁻¹ respectively with no significant difference. Cumulative N2O emission under MSI and FI was 272.67 mg · m⁻² and 154.08 mg · m⁻², respectively. (5) During returning green stage to harvest stage of winter wheat, the farther the distance away from the micro sprinkler irrigated pipes, the smaller the soil N2O emissions. Moreover, there were no significant differences among sptial treatment under MSI. Therefore, despite of the increase of soil CO2and N2O emissions, the intensity of carbon sink increased during the transformation from traditional flood irrigation to micro sprinkler irrigation in winter wheat fields.


Asunto(s)
Riego Agrícola , Contaminantes Atmosféricos/química , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Suelo/química , Triticum/crecimiento & desarrollo , Agricultura , Secuestro de Carbono , China , Monitoreo del Ambiente , Fertilizantes , Estaciones del Año , Agua
17.
Huan Jing Ke Xue ; 36(2): 625-35, 2015 Feb.
Artículo en Chino | MEDLINE | ID: mdl-26031092

RESUMEN

Based on a field manipulative nitrogen (N) addition experiment, the effects of atmospheric N deposition level change on the plant biomass and net primary productivity (NPP), soil respiration (Rs) and net ecosystem exchange (NEE) were investigated respectively in 2009 and 2010 in two differently degraded Leymus chinensis steppes in Inner Mongolia of China, and the difference in the response of NEE to equal amount of N addition [10 g x (M2 x a)(-1), MN] between the two steppes was also discussed. The results indicated that for the light degraded Leymus chinensis steppe (site A) , the average plant aboveground biomass (AGB) in MN treatment were 21.5% and 46.8% higher than those of CK in these two years. But for the moderate degraded Leymus chinensis steppe (site B), the N addition decreased the plant AGB and ANPP in 2009, while showed positive effects in 2010. N addition increased the belowground biomass (BGB) of the both sites and belowground NPP (BNPP) of site B in both years, but decreased the BNPP of site A in 2010. The increase of N input in the two steppes did not change the seasonal variation of Rs. The cumulative annual soil C emissions in MN treatment in site A showed an increase of about 14.6% and 25.7% of those in the CK respectively for these two years, while were decreased by about 10.4% and 11.3%, respectively in site B. The NEE of MN treatments, expressed by C, for the two steppes were 59.22 g x (m2 x a)(1) and 166.68 g x (m2 x a)(-1), as well as 83.27 g x (m2 x a)(-1) and 117.47 g x (m2 x a)(-1), respectively in these two years. The increments in NEE originated from N addition for these two years were 15.79 g x (M2 x a)(-1) and 82.94 g x (M2 x a)(-1) in site A and 74.54 g x (M2 x a)(-1) and 101.23 g x (M2 x a)(-1) in site B. The N input per unit could obtain greater C sink effect in the steppe with lower initial N level.


Asunto(s)
Ciclo del Carbono , Pradera , Nitrógeno/química , Poaceae , Biomasa , China , Clima , Suelo/química
18.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3532-44, 2015 Nov.
Artículo en Chino | MEDLINE | ID: mdl-26915213

RESUMEN

As a widespread natural phenomenon in the soil of middle and high latitude as well as high altitude, freeze-thawing cycles have a great influence on the nitrogen cycle of terrestrial ecosystem in non-growing season. Freeze-thawing cycles can alter the physicochemical and biological properties of the soil, which thereby affect the migration and transformation of soil nitrogen. The impacts of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem found in available studies remain inconsistent, the mechanism is still not clear, and the research methods also need to be further explored and innovated. So it is necessary to sum up and analyze the existing achievements in order to better understand the processes of soil nitrogen cycle subjected to freeze-thawing cycles. This paper reviewed the research progress in China and abroad about the effects and mechanisms of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem, including mineralization, immobilization, nitrification and denitrification, N leakage and gaseous loss, and analyzed the deficiencies of extant research. The possible key research topics that should be urgently paid more attention to in the future were also discussed.


Asunto(s)
Ecosistema , Congelación , Ciclo del Nitrógeno , Suelo/química , China , Desnitrificación , Nitrificación , Nitrógeno/química , Microbiología del Suelo
19.
Ying Yong Sheng Tai Xue Bao ; 25(11): 3373-80, 2014 Nov.
Artículo en Chino | MEDLINE | ID: mdl-25898639

RESUMEN

As one of the most important and wide distribution community type among terrestrial ecosystems, grassland ecosystem plays a critical role in the global carbon cycles and climate regulation. China has extremely rich grassland resources, which have a huge carbon sequestration potential and are an important part of the global carbon cycle. Drying and rewetting is a common natural phenomenon in soil, which might accelerate soil carbon mineralization process, increase soil respiration and exert profound influence on microbial activity and community structure. Under the background of the global change, the changes in rainfall capacity, strength and frequency would inevitably affect soil drying and wetting cycles, and thus change the microbial activity and community structure as well as soil respiration, and then exert important influence on global carbon budget. In this paper, related references in recent ten years were reviewed. The source of soil released, the trend of soil respiration over time and the relationship between soil respiration and microbial biomass, microbial activity and microbial community structure during the processes of dry-rewetting cycle were analyzed and summarized, in order to better understand the microbial response mechanism for drying and rewetting effecting on soil respiration in grassland ecosystem, and provide a certain theoretical basis for more accurate evaluation and prediction of future global carbon balance of terrestrial ecosystems and climate change.


Asunto(s)
Ciclo del Carbono , Pradera , Microbiología del Suelo , Bacterias , Biomasa , Carbono/química , China , Clima , Cambio Climático , Desecación , Lluvia , Suelo/química
20.
World J Gastroenterol ; 14(39): 6004-11, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18932278

RESUMEN

AIM: To observe the effect of berberine on insulin secretion in rat pancreatic islets and to explore its possible molecular mechanism. METHODS: Primary rat islets were isolated from male Sprague-Dawley rats by collagenase digestion and treated with different concentrations (1, 3, 10 and 30 micromol/L) of berberine or 1 micromol/L Glibenclamide (GB) for 24 h. Glucose-stimulated insulin secretion (GSIS) assay was conducted and insulin was determined by radioimmunoassay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate cytotoxicity. The mRNA level of hepatic nuclear factor 4 alpha (HNF4alpha) was determined by reverse transcription polymerase chain reaction (RT-PCR). Indirect immunofluorescence staining and Western blot analysis were employed to detect protein expression of HNF4alpha in the islets. Glucokinase (GK) activity was measured by spectrophotometric method. RESULTS: Berberine enhanced GSIS rather than basal insulin secretion dose-dependently in rat islets and showed no significant cytotoxicity on islet cells at the concentration of 10 mumol/L. Both mRNA and protein expressions of HNF4alpha were up-regulated by berberine in a dose-dependent manner, and GK activity was also increased accordingly. However, GB demonstrated no regulatory effects on HNF4alpha expression or GK activity. CONCLUSION: Berberine can enhance GSIS in rat islets, and probably exerts the insulinotropic effect via a pathway involving HNF4alpha and GK, which is distinct from sulphonylureas (SUs).


Asunto(s)
Berberina/farmacología , Glucoquinasa/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Islotes Pancreáticos/metabolismo , Extractos Vegetales/farmacología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Glucosa/farmacología , Gliburida/farmacología , Hipoglucemiantes/farmacología , Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...