Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS One ; 19(5): e0303296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753743

RESUMEN

AIM: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH. METHODS: Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD). Additionally, sphingosine kinase (SphK)1 mRNA, which generates sphingosine 1 phosphate (S1P), was examined in the livers of patients with MASH. RESULTS: CDD induced MASH and liver fibrosis were accompanied by elevated levels of S1P and increased expression of SphK1 in capillarized liver sinusoidal endothelial cells (LSECs) in mice. SphK1 mRNA also increased in the livers of patients with MASH. Treatment of primary cultured mouse hepatic stellate cells (HSCs) with S1P stimulated their activation, which was mitigated by the S1P receptor (S1PR)2 inhibitor, JTE013. The inhibition of S1PR2 or its knockout in mice suppressed liver fibrosis without reducing steatosis or hepatocellular damage. CONCLUSION: S1P level is increased in MASH livers and contributes to liver fibrosis via S1PR2.


Asunto(s)
Hígado Graso , Células Estrelladas Hepáticas , Cirrosis Hepática , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animales , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Cirrosis Hepática/etiología , Ratones , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Pirazoles , Piridinas
2.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681411

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes are interacting comorbidities of obesity, and increased hepatic de novo lipogenesis (DNL), driven by hyperinsulinemia and carbohydrate overload, contributes to their pathogenesis. Fatty acid synthase (FASN), a key enzyme of hepatic DNL, is upregulated in association with insulin resistance. However, the therapeutic potential of targeting FASN in hepatocytes for obesity-associated metabolic diseases is unknown. Here, we show that hepatic FASN deficiency differentially affects NAFLD and diabetes depending on the etiology of obesity. Hepatocyte-specific ablation of FASN ameliorated NAFLD and diabetes in melanocortin 4 receptor-deficient mice but not in mice with diet-induced obesity. In leptin-deficient mice, FASN ablation alleviated hepatic steatosis and improved glucose tolerance but exacerbated fed hyperglycemia and liver dysfunction. The beneficial effects of hepatic FASN deficiency on NAFLD and glucose metabolism were associated with suppression of DNL and attenuation of gluconeogenesis and fatty acid oxidation, respectively. The exacerbation of fed hyperglycemia by FASN ablation in leptin-deficient mice appeared attributable to impairment of hepatic glucose uptake triggered by glycogen accumulation and citrate-mediated inhibition of glycolysis. Further investigation of the therapeutic potential of hepatic FASN inhibition for NAFLD and diabetes in humans should thus consider the etiology of obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Acido Graso Sintasa Tipo I/genética , Ácido Graso Sintasas , Hiperglucemia/complicaciones , Leptina , Óxido Nítrico Sintasa , Obesidad/complicaciones , Obesidad/genética
3.
Pharmacol Ther ; 246: 108421, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37080433

RESUMEN

Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.


Asunto(s)
Lisofosfolípidos , Receptores del Ácido Lisofosfatídico , Humanos , Receptores del Ácido Lisofosfatídico/fisiología , Lisofosfolípidos/metabolismo , Transducción de Señal , Glicerol
4.
Biochem Biophys Res Commun ; 663: 179-185, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37121128

RESUMEN

Docosahexaenoic acid (DHA), an omega-3 fatty acid, usually presents as a constituent of phospholipids in the cellular membrane. Lysophospholipid acyltransferase 3 (LPLAT3; AGPAT3) is the primary enzyme that incorporates DHA into phospholipids. LPLAT3-KO mice show male infertility and visual dysfunction accompanied by decreased phospholipids (PLs) containing DHA (PL-DHA) in the testis and retina, respectively. In this study, we evaluated the effect of diets consisting mainly of triacylglycerol-bound DHA (fish oil) and PL-bound DHA (salmon roe oil) on the amount of PL-DHA in a broad range of tissues and on reproductive functions. Both diets elevated phosphatidylcholines (PCs)-containing DHA in most tissues of wild type (WT) mice. Although LPLAT3-KO mice acquired a minimal amount of PC-DHA in the testes and sperm by eating either of the diets, reproductive function did not improve. The present study suggests that DHA-rich diets do not restore sufficient PL-DHA to improve male infertility in LPLAT3-KO mice. Alternatively, PL-DHA can be biosynthesized by LPLAT3 but not by external supplementation, which may be necessary for normal reproductive function.


Asunto(s)
Ácidos Grasos Omega-3 , Infertilidad Masculina , Masculino , Ratones , Animales , Humanos , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Semen , Fosfolípidos , Dieta , Ácidos Docosahexaenoicos
5.
FASEB J ; 37(1): e22676, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468834

RESUMEN

The G protein-coupled receptors, GPR43 (free fatty acid receptor 2, FFA2) and GPR41 (free fatty acid receptor 3, FFA3), are activated by short-chain fatty acids produced under various conditions, including microbial fermentation of carbohydrates. Previous studies have implicated this receptor energy homeostasis and immune responses as well as in cell growth arrest and apoptosis. Here, we observed the expression of both receptors in human blood cells and a remarkable enhancement in leukemia cell lines (HL-60, U937, and THP-1 cells) during differentiation. A reporter assay revealed that GPR43 is coupled with Gαi and Gα12/13 and is constitutively active without any stimuli. Specific blockers of GPR43, GLPG0974 and CATPB function as inverse agonists because treatment with these compounds significantly reduces constitutive activity. In HL-60 cells, enhanced expression of GPR43 led to growth arrest through Gα12/13 . In addition, the blockage of GPR43 activity in these cells significantly impaired their adherent properties due to the reduction of adhesion molecules. We further revealed that enhanced GPR43 activity induces F-actin formation. However, the activity of GPR43 did not contribute to butyrate-induced apoptosis in differentiated HL-60 cells because of the ineffectiveness of the inverse agonist on cell death. Collectively, these results suggest that GPR43, which possesses constitutive activity, is crucial for growth arrest, followed by the proper differentiation of leukocytes.


Asunto(s)
Ácidos Grasos Volátiles , Leucocitos , Receptores de Superficie Celular , Humanos , Ácidos Grasos Volátiles/metabolismo , Leucocitos/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Diferenciación Celular , Células HL-60
6.
Hum Mol Genet ; 32(5): 825-834, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36173926

RESUMEN

In human autosomal recessive woolly hair/hypotrichosis (ARWH/HT), many mutations have been identified in a gene encoding LPA6, a G protein-coupled receptor (GPCR) for lysophosphatidic acid (LPA). However, information regarding the effects of such mutations on receptor function is limited. In this study, we examined functional impacts of selected amino acid changes in LPA6 identified in ARWH/HT patients. In our exogenous expression experiments, all mutants except S3T failed to respond to LPA, indicating that they are loss-of-function mutants. Among the nine mutants, five (D63V, G146R, N246D, L277P and C278Y) displayed impaired expression at the cell surface because of endoplasmic reticulum (ER) retention, indicating that these mutants are trafficking-defective, as reported in other disease-associated GPCRs. Notably, alkyl-OMPT, a potent synthetic agonist for LPA6 restored the defective cell surface expression of two of the ER-retained mutants, D63V and N246D, possibly by its chaperoning function that allows them to escape intracellular retention as well as proteasomal degradation. Furthermore, the alkyl-OMPT-rescued N246D mutant was shown be functional. Our findings encourage future application of pharmacoperone therapy for ARWH/HT patients with specific LPA6 mutations.


Asunto(s)
Enfermedades del Cabello , Hipotricosis , Humanos , Hipotricosis/genética , Cabello , Enfermedades del Cabello/genética , Mutación , Genes Recesivos
7.
Sci Rep ; 12(1): 11790, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821061

RESUMEN

Bitter taste receptors (T2Rs) are G protein-coupled receptors involved in the perception of bitter taste on the tongue. In humans, T2Rs have been found in several sites outside the oral cavity. Although T2R38 has been reported to be expressed on peripheral lymphocytes, it is poorly understood whether T2R38 plays immunological roles in inflammatory skin diseases such as atopic dermatitis (AD). Then, we first confirmed that T2R38 gene expression was higher in lesional skin of AD subjects than healthy controls. Furthermore, skin T2R38 expression levels were correlated with serum thymus and activation-regulated chemokine and IgE levels in AD patients. In lesional skin of AD, section staining revealed that CD3+ T cells in the dermis were T2R38 positive. In addition, flow cytometry analysis showed T2R38 expression in skin T cells. Migration assays using T2R38-transduced Jurkat T cell leukemia cells revealed that T2R38 agonists exerted a dose-dependent migration inhibitory effect. Moreover, skin tissue extracts, as well as supernatants of cultured HaCaT keratinocytes, caused T2R38-dependent migration inhibition, indicating that there should be an endogenous ligand for T2R38 in the skin epidermis. These findings implicate T2R38 as a migratory inhibitory receptor on the skin-infiltrating lymphocytes and as a therapeutic target for allergic/inflammatory skin diseases.


Asunto(s)
Dermatitis Atópica , Papilas Gustativas , Movimiento Celular , Dermatitis Atópica/genética , Humanos , Linfocitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Gusto , Papilas Gustativas/metabolismo
8.
J Biol Chem ; 298(1): 101470, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890643

RESUMEN

The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Glicerofosfolípidos , Lisofosfolípidos , 1-Acilglicerofosfocolina O-Aciltransferasa/clasificación , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Glicerofosfolípidos/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Terminología como Asunto
9.
Hepatology ; 76(1): 112-125, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34855990

RESUMEN

BACKGROUND AND AIMS: Chronic liver congestion reflecting right-sided heart failure (RHF), Budd-Chiari syndrome, or Fontan-associated liver disease (FALD) is involved in liver fibrosis and HCC. However, molecular mechanisms of fibrosis and HCC in chronic liver congestion remain poorly understood. APPROACH AND RESULTS: Here, we first demonstrated that chronic liver congestion promoted HCC and metastatic liver tumor growth using murine model of chronic liver congestion by partial inferior vena cava ligation (pIVCL). As the initial step triggering HCC promotion and fibrosis, gut-derived lipopolysaccharide (LPS) appeared to induce LSECs capillarization in mice and in vitro. LSEC capillarization was also confirmed in patients with FALD. Mitogenic factor, sphingosine-1-phosphate (S1P), was increased in congestive liver and expression of sphingosine kinase 1, a major synthetase of S1P, was increased in capillarized LSECs after pIVCL. Inhibition of S1P receptor (S1PR) 1 (Ex26) and S1PR2 (JTE013) mitigated HCC development and liver fibrosis, respectively. Antimicrobial treatment lowered portal blood LPS concentration, LSEC capillarization, and liver S1P concentration accompanied by reduction of HCC development and fibrosis in the congestive liver. CONCLUSIONS: In conclusion, chronic liver congestion promotes HCC development and liver fibrosis by S1P production from LPS-induced capillarized LSECs. Careful treatment of both RHF and liver cancer might be necessary for patients with RHF with primary or metastatic liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Insuficiencia Cardíaca , Neoplasias Hepáticas , Enfermedades Vasculares , Animales , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Fibrosis , Humanos , Lipopolisacáridos , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Lisofosfolípidos/metabolismo , Ratones , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
10.
Adv Exp Med Biol ; 1274: 137-176, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32894510

RESUMEN

Lysophosphatidic acid (LPA) has major roles as a bioactive signaling molecule, with multiple physiological and pathological roles being described in almost every major organ system. In this review we discuss LPA signaling pathways as emerging drug targets for multiple conditions relevant to human health and disease. LPA signals through the six G protein-coupled receptors LPA1-6, and several of these receptors along with the LPA-producing enzyme including autotaxin (ATX) are now established as therapeutic targets with potential to treat various human diseases as exemplified by several LPA signaling targeting compounds now in clinical trials for idiopathic pulmonary fibrosis and systemic sclerosis. Several crystal structures of LPA receptors and ATX have been solved, which will accelerate development of highly selective and effective LPA signaling targeting compounds. We also review additional bioactive lysophospholipid (LPL) signaling molecules including lysophosphatidylserine and lysophosphatidylinositol, which represent the next wave of LPL druggable targets. An emerging theme in bioactive LPL signaling is that where the ligand is produced and how it is delivered to the cognate receptor are critical determinants of the biological responses. We will also discuss how connecting the production and function of bioactive LPLs will identify new therapeutic strategies to effectively target LPL signaling pathways.


Asunto(s)
Lisofosfolípidos/metabolismo , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Receptores del Ácido Lisofosfatídico/química , Receptores del Ácido Lisofosfatídico/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/metabolismo
11.
iScience ; 23(9): 101495, 2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32891885

RESUMEN

Polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and arachidonic acid (ARA), play fundamental roles in mammalian physiology. Although PUFA imbalance causes various disorders, mechanisms of the regulation of their systemic levels are poorly understood. Here, we report that hepatic DHA-containing phospholipids (DHA-PLs) determine the systemic levels of PUFAs through the SREBP1-mediated transcriptional program. We demonstrated that liver-specific deletion of Agpat3 leads to a decrease of DHA-PLs and a compensatory increase of ARA-PLs not only in the liver but also in other tissues including the brain. Together with recent findings that plasma lysophosphatidylcholine (lysoPC) is the major source of brain DHA, our results indicate that hepatic AGPAT3 contributes to brain DHA accumulation by supplying DHA-PLs as precursors of DHA-lysoPC. Furthermore, dietary fish oil-mediated suppression of hepatic PUFA biosynthetic program was blunted in liver-specific Agpat3 deletion. Our findings highlight the central role of hepatic DHA-PLs as the molecular rheostat for systemic homeostasis of PUFAs.

12.
JCI Insight ; 5(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32544090

RESUMEN

During the growth of lymphatic vessels (lymphangiogenesis), lymphatic endothelial cells (LECs) at the growing front sprout by forming filopodia. Those tip cells are not exposed to circulating lymph, as they are not lumenized. In contrast, LECs that trail the growing front are exposed to shear stress, become quiescent, and remodel into stable vessels. The mechanisms that coordinate the opposed activities of lymphatic sprouting and maturation remain poorly understood. Here, we show that the canonical tip cell marker Delta-like 4 (DLL4) promotes sprouting lymphangiogenesis by enhancing VEGF-C/VEGF receptor 3 (VEGFR3) signaling. However, in lumenized lymphatic vessels, laminar shear stress (LSS) inhibits the expression of DLL4, as well as additional tip cell markers. Paradoxically, LSS also upregulates VEGF-C/VEGFR3 signaling in LECs, but sphingosine 1-phosphate receptor 1 (S1PR1) activity antagonizes LSS-mediated VEGF-C signaling to promote lymphatic vascular quiescence. Correspondingly, S1pr1 loss in LECs induced lymphatic vascular hypersprouting and hyperbranching, which could be rescued by reducing Vegfr3 gene dosage in vivo. In addition, S1PR1 regulates lymphatic vessel maturation by inhibiting RhoA activity to promote membrane localization of the tight junction molecule claudin-5. Our findings suggest a potentially new paradigm in which LSS induces quiescence and promotes the survival of LECs by downregulating DLL4 and enhancing VEGF-C signaling, respectively. S1PR1 dampens LSS/VEGF-C signaling, thereby preventing sprouting from quiescent lymphatic vessels. These results also highlight the distinct roles that S1PR1 and DLL4 play in LECs when compared with their known roles in the blood vasculature.


Asunto(s)
Linfangiogénesis/genética , Receptores de Esfingosina-1-Fosfato/genética , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Línea Celular , Proliferación Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Proteínas de la Membrana/genética , Ratones , Seudópodos/genética , Seudópodos/metabolismo , Transducción de Señal , Estrés Mecánico
13.
Dev Cell ; 52(6): 779-793.e7, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32059774

RESUMEN

Transcriptional mechanisms that drive angiogenesis and organotypic vascular endothelial cell specialization are poorly understood. Here, we show that retinal endothelial sphingosine 1-phosphate receptors (S1PRs), which restrain vascular endothelial growth factor (VEGF)-induced angiogenesis, spatially restrict expression of JunB, a member of the activator protein 1 (AP-1) family of transcription factors (TFs). Mechanistically, VEGF induces JunB expression at the sprouting vascular front while S1PR-dependent vascular endothelial (VE)-cadherin assembly suppresses JunB expression in the nascent vascular network, thus creating a gradient of this TF. Endothelial-specific JunB knockout mice showed diminished expression of neurovascular guidance genes and attenuated retinal vascular network progression. In addition, endothelial S1PR signaling is required for normal expression of ß-catenin-dependent genes such as TCF/LEF1 and ZIC3 TFs, transporters, and junctional proteins. These results show that S1PR signaling restricts JunB function to the expanding vascular front, thus creating an AP-1 gradient and enabling organotypic endothelial cell specialization of the vascular network.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Fisiológica , Vasos Retinianos/metabolismo , Transducción de Señal , Receptores de Esfingosina-1-Fosfato/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Células Cultivadas , Ensamble y Desensamble de Cromatina , Células Endoteliales/citología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Vasos Retinianos/citología , Vasos Retinianos/embriología , Factor de Transcripción AP-1/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
J Exp Med ; 216(7): 1582-1598, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31147448

RESUMEN

Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) activate G protein-coupled receptors (GPCRs) to regulate biological processes. Using a genome-wide CRISPR/dCas9-based GPCR signaling screen, LPAR1 was identified as an inducer of S1PR1/ß-arrestin coupling while suppressing Gαi signaling. S1pr1 and Lpar1-positive lymphatic endothelial cells (LECs) of lymph nodes exhibit constitutive S1PR1/ß-arrestin signaling, which was suppressed by LPAR1 antagonism. Pharmacological inhibition or genetic loss of function of Lpar1 reduced the frequency of punctate junctions at sinus-lining LECs. Ligand activation of transfected LPAR1 in endothelial cells remodeled junctions from continuous to punctate structures and increased transendothelial permeability. In addition, LPAR1 antagonism in mice increased lymph node retention of adoptively transferred lymphocytes. These data suggest that cross-talk between LPAR1 and S1PR1 promotes the porous junctional architecture of sinus-lining LECs, which enables efficient lymphocyte trafficking. Heterotypic inter-GPCR coupling may regulate complex cellular phenotypes in physiological milieu containing many GPCR ligands.


Asunto(s)
Células Endoteliales/metabolismo , Ganglios Linfáticos/metabolismo , Receptor Cross-Talk , Animales , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Técnica del Anticuerpo Fluorescente , Edición Génica , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lisofosfolípidos/metabolismo , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
15.
JCI Insight ; 3(24)2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30568036

RESUMEN

White adipose tissue (WAT) can dynamically expand and remodel through adipocyte hypertrophy and hyperplasia. The relative contribution of these 2 mechanisms to WAT expansion is a critical determinant of WAT function and dysfunction in obesity. However, little is known about the signaling systems that determine the mechanisms of WAT expansion. Here, we show that the GPCR LPA4 selectively activates Gα12/13 proteins in adipocytes and limits continuous remodeling and healthy expansion of WAT. LPA4-KO mice showed enhanced expression of mitochondrial and adipogenesis genes and reduced levels of inhibitory phosphorylation of PPARγ in WAT, along with increased production of adiponectin. Furthermore, LPA4-KO mice showed metabolically healthy obese phenotypes in a diet-induced obesity model, with continuous WAT expansion, as well as protection from WAT inflammation, hepatosteatosis, and insulin resistance. These findings unravel a potentially new signaling system that underlies WAT plasticity and expandability, providing a promising therapeutic approach for obesity-related metabolic disorders.


Asunto(s)
Tejido Adiposo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Obesidad/metabolismo , Receptores Purinérgicos/metabolismo , Expansión de Tejido/métodos , Adipocitos/metabolismo , Adipogénesis/genética , Adiponectina/metabolismo , Tejido Adiposo/patología , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Fibroblastos , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Obesidad/genética , Obesidad/patología , PPAR gamma/metabolismo , Fosforilación , Receptores Purinérgicos/genética , Transducción de Señal
16.
Sci Signal ; 11(544)2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131369

RESUMEN

Leukotriene B4 (LTB4) receptor type 1 (BLT1) is abundant in phagocytic and immune cells and plays crucial roles in various inflammatory diseases. BLT1 is phosphorylated at several serine and threonine residues upon stimulation with the inflammatory lipid LTB4 Using Phos-tag gel electrophoresis to separate differentially phosphorylated forms of BLT1, we identified two distinct types of phosphorylation, basal and ligand-induced, in the carboxyl terminus of human BLT1. In the absence of LTB4, the basal phosphorylation sites were modified to various degrees, giving rise to many different phosphorylated forms of BLT1. Different concentrations of LTB4 induced distinct phosphorylation events, and these ligand-induced modifications facilitated additional phosphorylation events at the basal phosphorylation sites. Because neutrophils migrate toward inflammatory sites along a gradient of LTB4, the degree of BLT1 phosphorylation likely increases in parallel with the increase in LTB4 concentration as the cells migrate. At high concentrations of LTB4, deficiencies in these two types of phosphorylation events impaired chemotaxis and ß-hexosaminidase release, a proxy for degranulation, in Chinese hamster ovary (CHO-K1) and rat basophilic leukemia (RBL-2H3) cells, respectively. These results suggest that an LTB4 gradient around inflammatory sites enhances BLT1 phosphorylation in a stepwise manner to facilitate the precise migration of phagocytic and immune cells and the initiation of local responses, including degranulation.


Asunto(s)
Leucotrieno B4/farmacología , Neutrófilos/efectos de los fármacos , Receptores de Leucotrieno B4/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cricetinae , Cricetulus , Células HL-60 , Células HeLa , Humanos , Leucotrieno B4/metabolismo , Ratones , Neutrófilos/citología , Neutrófilos/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Receptores de Leucotrieno B4/genética
17.
Biochem Biophys Res Commun ; 501(4): 1048-1054, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29778535

RESUMEN

Cerebral edema is a life-threatening neurological condition characterized by brain swelling due to the accumulation of excess fluid both intracellularly and extracellularly. Fulminant hepatic failure (FHF) develops cerebral edema by disrupting blood-brain barrier (BBB). However, the mechanisms by which mediator induces brain edema in FHF remain to be elucidated. Here, we assessed a linkage between brain edema and lysophosphatidic acid (LPA) signaling by utilizing an animal model of FHF and in vitro BBB model. Azoxymethane-treated mice developed FHF and hepatic encephalopathy, associated with higher autotaxin (ATX) activities in serum than controls. Using in vitro BBB model, LPA disrupted the structural integrity of tight junction proteins including claudin-5, occludin, and ZO-1. Furthermore, LPA decreased transendothelial electrical resistances in in vitro BBB model, and induced cell contraction in brain endothelial monolayer cultures, both being inhibited by a Rho-associated protein kinase inhibitor, Y-27632. The brain capillary endothelial cells predominantly expressed LPA6 mRNA, whose knockdown blocked the LPA-induced endothelial cell contraction. Taken together, the up-regulation of serum ATX in hepatic encephalopathy may activate the LPA-LPA6-G12/13-Rho pathway in brain capillary endothelial cells, leading to enhancement of BBB permeability and brain edema.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Encefalopatía Hepática/metabolismo , Encefalopatía Hepática/patología , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Azoximetano , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Edema Encefálico/complicaciones , Edema Encefálico/patología , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Fallo Hepático Agudo/complicaciones , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/patología , Lisofosfolípidos/farmacología , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Hidrolasas Diéster Fosfóricas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
18.
J Pharmacol Sci ; 136(2): 93-96, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29409686

RESUMEN

Lysophosphatidic acid (LPA) and LPA1 receptor signaling play a crucial role in the initiation of peripheral nerve injury-induced neuropathic pain through the alternation of pain-related genes/proteins expression and demyelination. However, LPA and its signaling in the brain are still poorly understood. In the present study, we revealed that the LPA5 receptor expression in corpus callosum elevated after the initiation of demyelination, and the hyperalgesia through Aδ-fibers following cuprizone-induced demyelination was mediated by LPA5 signaling. These data suggest that LPA5 signaling may play a key role in the mechanisms underlying neuropathic pain following demyelination in the brain.


Asunto(s)
Cuprizona/efectos adversos , Modelos Animales de Enfermedad , Esclerosis Múltiple/etiología , Esclerosis Múltiple/genética , Neuralgia/etiología , Neuralgia/genética , Receptores del Ácido Lisofosfatídico/fisiología , Transducción de Señal/fisiología , Animales , Cuerpo Calloso/metabolismo , Femenino , Expresión Génica , Lisofosfolípidos/fisiología , Masculino , Ratones Endogámicos , Esclerosis Múltiple/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo
19.
Nature ; 552(7684): 180-181, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29239390
20.
Nat Commun ; 8(1): 1163, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079828

RESUMEN

G protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors involved in virtually all physiological processes, are the major target class for approved drugs. Imaging GPCR activation in real time in living animals would provide a powerful way to study their role in biology and disease. Here, we describe a mouse model that enables the bioluminescent detection of GPCR activation in real time by utilizing the clinically important GPCR, sphingosine-1-phosphate receptor 1 (S1P1). A synthetic S1P1 signaling pathway, designed to report the interaction between S1P1 and ß-arrestin2 via the firefly split luciferase fragment complementation system, is genetically encoded in these mice. Upon receptor activation and subsequent ß-arrestin2 recruitment, an active luciferase enzyme complex is produced, which can be detected by in vivo bioluminescence imaging. This imaging strategy reveals the dynamics and spatial specificity of S1P1 activation in normal and pathophysiologic contexts in vivo and can be applied to other GPCRs.


Asunto(s)
Luminiscencia , Receptores de Lisoesfingolípidos/metabolismo , Arrestina beta 2/metabolismo , Alelos , Animales , Membrana Celular/metabolismo , Células Madre Embrionarias/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Clorhidrato de Fingolimod/química , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Heterocigoto , Homocigoto , Inflamación , Ligandos , Luciferasas/metabolismo , Ratones , Transducción de Señal , Esfingolípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA