Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS Biol ; 21(8): e3002251, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37607211

RESUMEN

Modern advances in DNA sequencing hold the promise of facilitating descriptions of new organisms at ever finer precision but have come with challenges as the major Codes of bionomenclature contain poorly defined requirements for species and subspecies diagnoses (henceforth, species diagnoses), which is particularly problematic for DNA-based taxonomy. We, the commissioners of the International Commission on Zoological Nomenclature, advocate a tightening of the definition of "species diagnosis" in future editions of Codes of bionomenclature, for example, through the introduction of requirements for specific information on the character states of differentiating traits in comparison with similar species. Such new provisions would enhance taxonomic standards and ensure that all diagnoses, including DNA-based ones, contain adequate taxonomic context. Our recommendations are intended to spur discussion among biologists, as broad community consensus is critical ahead of the implementation of new editions of the International Code of Zoological Nomenclature and other Codes of bionomenclature.


Asunto(s)
ADN , ADN/genética , Fenotipo , Análisis de Secuencia de ADN
2.
Front Insect Sci ; 3: 1134889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469513

RESUMEN

Lycorma delicatula (Hemiptera: Fulgoridae), the spotted lanternfly, native to China, invaded and established in the northeast U.S. in 2014. Since this time, populations have grown and spread rapidly, and invasion bridgeheads have been detected in mid-western states (i.e., Indiana in 2021). This invasive pest presents a significant threat to Californian agriculture. Therefore, a proactive classical biological control program using Anastatus orientalis (Hymenoptera: Eupelmidae), a L. delicatula egg parasitoid native to China, was initiated in anticipation of eventual establishment of L. delicatula in California. In support of this proactive approach, the potential host range of A. orientalis was investigated. Eggs of 34 insect species either native or non-native to the southwestern U.S. were assessed for suitability for parasitism and development of A. orientalis. Of the native species tested, 10, 13, and one were Hemiptera, Lepidoptera, and Mantodea, respectively. Of the non-native species, eight Hemiptera and two Lepidoptera were evaluated. Host range tests conducted in a quarantine facility, exposed individually mated A. orientalis females (Haplotype C) to non-target and target (i.e., L. delicatula) eggs in sequential no-choice and static choice experiments to determine suitability for parasitization and development. Additionally, the sex ratio, fertility, and size of offspring obtained from non-target and target eggs were evaluated. Results of host range testing indicated that A. orientalis is likely polyphagous and can successfully parasitize and develop in host species belonging to at least two different orders (i.e., Hemiptera, Lepidoptera) and seven families (Coreidae, Erebidae, Fulgoridae, Lasiocampidae, Pentatomidae, Saturniidae and Sphingidae). Prospects for use of A. orientalis as a classical biological control agent of L. delicatula in the southwestern U.S. are discussed.

3.
J Med Entomol ; 59(4): 1217-1235, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35639998

RESUMEN

Tabanus variegatus F. 1805 has been called by the name Tabanus sulcifronsMacquart 1855 for over 80 yr; T. variegatus is one of the most common large horse flies attacking livestock in much of the southeastern U.S. Morphological, ecological, and molecular evidence indicates that T. variegatus is a distinct species, and we redescribe the female and describe the male. The Fabricius holotype, heavily damaged after over nearly 220 yr, is nevertheless taxonomically sound. Morphology (size, color, palp shape, and r5 wing cell shape) can usually distinguish T. variegatus from T. sulcifrons, but some specimens remain difficult to separate, especially in and west of the Mississippi River Valley. Using geometric morphometric analyses of the wing vein arrangement and palp shape the two species are significantly different. The wings of T. variegatus females also have more microsetae and sometimes a "frosty" appearance. Where they are common and sympatric, as in eastern Tennessee, they are temporally separated such that T. variegatus flies later (August-October) than T. sulcifrons (June-August), minimizing opportunity for gene flow. Museum specimens allow the approximate range of T. variegatus to be compared with that of T. sulcifrons s.l.; T. variegatus is particularly abundant from the coast of the Carolinas and Georgia east to central Tennessee and south to about central Alabama. DNA evidence (COI gene) recovers T. variegatus and T. sulcifrons s.s. in separate clades. Further studies on the T. sulcifrons complex are needed to fully resolve the range of both species, assess the degree of genetic substructuring, and examine relationships with other members of the T. sulcifrons complex.


Asunto(s)
Dípteros , Alabama , Animales , Ambiente , Femenino , Georgia , Masculino , América del Norte
4.
mBio ; 12(6): e0231721, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34809450

RESUMEN

Diet and gut microbiomes are intricately linked on both short and long timescales. Changes in diet can alter the microbiome, while microbes in turn allow hosts to access novel diets. Bees are wasps that switched to a vegetarian lifestyle, and the vast majority of bees feed on pollen and nectar. Some stingless bee species, however, also collect carrion, and a few have fully reverted to a necrophagous lifestyle, relying on carrion for protein and forgoing flower visitation altogether. These "vulture" bees belong to the corbiculate apid clade, which is known for its ancient association with a small group of core microbiome phylotypes. Here, we investigate the vulture bee microbiome, along with closely related facultatively necrophagous and obligately pollinivorous species, to understand how these diets interact with microbiome structure. Via deep sequencing of the 16S rRNA gene and subsequent community analyses, we find that vulture bees have lost some core microbes, retained others, and entered into novel associations with acidophilic microbes found in the environment and on carrion. The abundance of acidophilic bacteria suggests that an acidic gut is important for vulture bee nutrition and health, as has been found in other carrion-feeding animals. Facultatively necrophagous bees have more variable microbiomes than strictly pollinivorous bees, suggesting that bee diet may interact with microbiomes on both short and long timescales. Further study of vulture bees promises to provide rich insights into the role of the microbiome in extreme diet switches. IMPORTANCE When asked where to find bees, people often picture fields of wildflowers. While true for almost all species, there is a group of specialized bees, also known as the vulture bees, that instead can be found slicing chunks of meat from carcasses in tropical rainforests. In this study, researchers compared the microbiomes of closely related bees that live in the same region but vary in their dietary lifestyles: some exclusively consume pollen and nectar, others exclusively depend on carrion for their protein, and some consume all of the above. Researchers found that vulture bees lost some ancestral "core" microbes, retained others, and entered into novel associations with acidophilic microbes, which have similarly been found in other carrion-feeding animals such as vultures, these bees' namesake. This research expands our understanding of how diet interacts with microbiomes on both short and long timescales in one of the world's biodiversity hot spots.


Asunto(s)
Alimentación Animal/análisis , Abejas/microbiología , Abejas/fisiología , Pollos/parasitología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Abejas/clasificación , Biodiversidad , Conducta Alimentaria , Flores/metabolismo , Flores/parasitología , Simbiosis
5.
Methods Mol Biol ; 1897: 163-189, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30539445

RESUMEN

Arthropods comprise an amazingly diverse group of life forms that are extensively studied in almost every field of the biological sciences. Given that the vast majority of animals are arthropods (primarily insects, arachnids, and crustaceans), knowledge of the specific methods to collect and preserves these organisms for scientific purposes can be indispensable. The application of this research can play major roles in fundamental aspects of human society, including agriculture and medicine. With something on the order of 5-10 million or more arthropod species in existence, it is a challenge for any biologist to attempt to assess and document biodiversity, but many of us find ourselves in a position to either perform this task, or assist others in doing so. It is therefore of utmost importance that proper collection and preservation techniques are used for arthropods which are then made available to scientists for diverse fields of research. The actual practical details of collection and preservation are nearly as diverse as the organisms themselves, so we can only attempt to give basic guidelines here, discussing equipment, trapping techniques, preservation methods, and documentation methods necessary for scientists inexperienced in arthropod collecting to preserve research-quality specimens.


Asunto(s)
Artrópodos , Bancos de Muestras Biológicas , Preservación Biológica/métodos , Manejo de Especímenes/métodos , Animales , Humanos
6.
Thomson, Scott A; Pyle, Richard L; Ahyong, Shane T; Alonso-Zarazaga, Miguel; Ammirati, Joe; Araya, Juan Francisco; Ascher, John S; Audisio, Tracy Lynn; Azevedo-Santos, Valter M; Bailly, Nicolas; Baker, William J; Balke, Michael; Barclay, Maxwell V. L; Barrett, Russell L; Benine, Ricardo C; Bickerstaff, James R. M; Bouchard, Patrice; Bour, Roger; Bourgoin, Thierry; Boyko, Christopher B; Breure, Abraham S. H; Brothers, Denis J; Byng, James W; Campbell, David; Ceriaco, Luis M. P; Cernak, Istvan; Cerretti, Pierfilippo; Chang, Chih-Han; Cho, Soowon; Copus, Joshua M; Costello, Mark J; Cseh, Andras; Csuzdi, Csaba; Culham, Alastair; D'Elia, Guillermo; d'Acoz, Cedric d'Udekem; Daneliya, Mikhail E; Dekker, Rene; Dickinson, Edward C; Dickinson, Timothy A; van Dijk, Peter Paul; Dijkstra, Klaas-Douwe B; Dima, Balint; Dmitriev, Dmitry A; Duistermaat, Leni; Dumbacher, John P; Eiserhardt, Wolf L; Ekrem, Torbjorn; Evenhuis, Neal L; Faille, Arnaud; Fernandez-Trianam, Jose L; Fiesler, Emile; Fishbein, Mark; Fordham, Barry G; Freitas, Andre V. L; Friol, Natalia R; Fritz, Uwe; Froslev, Tobias; Funk, Vicki A; Gaimari, Stephen D; Garbino, Guilherme S. T; Garraffoni, Andre R. S; Geml, Jozsef; Gill, Anthony C; Gray, Alan; Grazziotin, Felipe Gobbi; Greenslade, Penelope; Gutierrez, Eliecer E; Harvey, Mark S; Hazevoet, Cornelis J; He, Kai; He, Xiaolan; Helfer, Stephan; Helgen, Kristofer M; van Heteren, Anneke H; Garcia, Francisco Hita; Holstein, Norbert; Horvath, Margit K; Hovenkamp, Peter H; Hwang, Wei Song; Hyvonen, Jaakko; Islam, Melissa B; Iverson, John B; Ivie, Michael A; Jaafar, Zeehan; Jackson, Morgan D; Jayat, J. Pablo; Johnson, Norman F; Kaiser, Hinrich; Klitgard, Bente B; Knapp, Daniel G; Kojima, Jun-ichi; Koljalg, Urmas; Kontschan, Jeno; Krell, Frank-Thorsten; Krisai-Greilhuberm, Irmgard; Kullander, Sven; Latelle, Leonardo; Lattke, John E; Lencioni, Valeria; Lewis, Gwilym P; Lhano, Marcos G; Lujan, Nathan K; Luksenburg, Jolanda A; Mariaux, Jean; Marinho-Filho, Jader; Marshall, Christopher J; Mate, Jason F; McDonough, Molly M; Michel, Ellinor; Miranda, Vitor F. O; Mitroiulm, Mircea-Dan; Molinari, Jesus; Monks, Scott; Moore, Abigail J; Moratelli, Ricardo; Muranyi, David; Nakano, Takafumi; Nikolaeva, Svetlana; Noyes, John; Ohl, Michael; Oleas, Nora H; Orrell, Thomas; Pall-Gergele, Barna; Pape, Thomas; Papp, Viktor; Parenti, Lynne R; Patterson, David; Pavlinov, Igor Ya; Pine, Ronald H; Poczai, Peter; Prado, Jefferson; Prathapan, Divakaran; Rabeler, Richard K; Randall, John E; Rheindt, Frank E; Rhodin, Anders G. J; Rodriguez, Sara M; Rogers, D. Christopher; Roque, Fabio de O; Rowe, Kevin C; Ruedas, Luis A; Salazar-Bravo, Jorge; Salvador, Rodrigo B; Sangster, George; Sarmiento, Carlos E; Schigel, Dmitry S; Schmidt, Stefan; Schueler, Frederick W; Segers, Hendrik; Snow, Neil; Souza-Dias, Pedro G. B; Stals, Riaan; Stenroos, Soili; Stone, R. Douglas; Sturm, Charles F; Stys, Pavel; Teta, Pablo; Thomas, Daniel C; Timm, Robert M; Tindall, Brian J; Todd, Jonathan A; Triebel, Dagmar; Valdecasas, Antonio G; Vizzini, Alfredo; Vorontsova, Maria S; de Vos, Jurriaan M; Wagner, Philipp; Watling, Les; Weakley, Alan; Welter-Schultes, Francisco; Whitmore, Daniel; Wilding, Nicholas; Will, Kipling; Williams, Jason; Wilson, Karen; Winston, Judith E; Wuster, Wolfgang; Yanega, Douglas; Yeates, David K; Zaher, Hussam; Zhang, Guanyang; Zhang, Zhi-Qiang; Zhou, Hong-Zhang.
PLoS. Biol. ; 16(3): e2005075, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15045
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...