Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Opt Express ; 31(24): 40980-40990, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-38041385

In this paper, we established a high power tandem pumped fiber amplifier based on tapered ytterbium-doped fiber (TYDF). The TYDF is developed in-house with a core/inner cladding diameter of 30/250 µm at the small-core region and 48/400 µm at the large-core region. The key parameters of the amplifier in a co-pumped and counter-pumped configuration are experimentally investigated, such as slope efficiency, stimulated Raman scattering (SRS) threshold, and beam quality evolution. Up to 10.28 kW laser free of SRS or transverse mode instability is obtained from the counter-pumped amplifier, and the beam quality factor M2 is 2.29, which is significantly improved compared with the 48/400 µm uniform YDF. To the best of our knowledge, this is the highest average output power achieved so far based on the TYDF. This work could provide a solution for balancing the SRS suppression and high order modes control in high power tandem pumped YDF lasers.

2.
Opt Express ; 31(16): 26831-26841, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37710533

We demonstrate an all-fiber high-power narrow-linewidth fiber laser based on a homemade tapered Yb-doped fiber (T-YDF). The laser performance is investigated and systematically compared with different seed powers and pump manners. The experimental results reveal that the injected seed power requires a trade-off designed to take into account the impact of spectral broadening, nonlinear effects, and transverse mode instability (TMI). Compared with the co-pump manner, the counter-pump manner performs well in inhibiting nonlinearities, spectral broadening, and improving the TMI threshold. Under the counter-pump manner, this narrow-linewidth T-YDF amplifier realized a 2.09 kW output power with a 3 dB spectral linewidth of ∼0.34 nm, a beam quality of M2∼1.28 and a high Raman suppression ratio over 53.5 dB, the highest reported power for such a T-YDF-based narrow-linewidth single-mode laser, to the best of our knowledge. This work provides a promising pathway towards implementing monolithic high-power narrow-linewidth single-mode fiber lasers.

3.
Opt Express ; 31(12): 20237-20243, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37381422

In high power fiber lasers, the degradation of beam quality caused by Raman effect has attracted more and more attention in recent years, but its physical mechanism is still unclear. We're going to differentiate between heat effect and nonlinear effect by duty cycle operation. The evolution of beam quality at different pump duty cycles has been studied based on a quasi-continuous wave (QCW) fiber laser. It is found that even if the Stokes intensity is only -6 dB (energy proportion: 26%) lower than that of the signal light intensity, the beam quality has no obvious change with the duty cycle of 5%; on the contrary, when the duty cycle gradually approaches 100% (CW-pumped scheme), the beam quality distortion changes faster and faster with the increase of Stokes intensity. The experimental results are contrary to core-pumped Raman effect theory [IEEE Photon. Technol. Lett.34, 215 (2022)10.1109/LPT.2022.3148999], and further analysis confirms that the heat accumulation in the process of Stokes frequency shift should be responsible for this phenomenon. That is the first time, to the best of our knowledge, for intuitive reveal of the origin of stimulated Raman scattering (SRS)-induced beam quality distortion under transverse mode instability (TMI) threshold in an experiment.

4.
Opt Express ; 30(14): 24936-24947, 2022 Jul 04.
Article En | MEDLINE | ID: mdl-36237036

In this work, a large-mode-area (LMA) step-index constant-cladding tapered-core (CCTC) Yb-doped fiber with a cladding diameter of ∼600 µm is successfully fabricated. The CCTC fiber has a small-core region (diameter of ∼20 µm) at both ends and a large-core region (diameter of ∼36 µm) in the middle. To prove the laser performance of the CCTC fiber, a detailed comparison experiment with conventional uniform fiber with the same effective core diameter is carried out in a multi-kW all-fiber MOPA configuration. The experimental results show that employing the CCTC fiber can effectively mitigate the thermally-induced transverse mode instability (TMI) in both co-pump and counter-pump schemes, and realize high slope efficiency and single-mode beam quality (M2∼1.30). Under the counter-pump scheme, the TMI threshold of the CCTC fiber is observed at ∼2.49 kW with a slope efficiency of 86.2%, while the uniform fiber amplifier exhibits a TMI threshold of ∼2.05 kW. The theoretical analysis based on a semi-analytical model indicates this CCTC fiber can effectively improve the TMI threshold owing to a stronger gain saturation. Our results verify the great potential of such an LMA CCTC fiber to mitigate thermal-induced TMI effect and achieve single-mode operation without sacrifice of laser efficiency in high power monolithic fiber lasers, and the further power scaling is expected by optimizing the fiber design.

5.
Opt Lett ; 47(11): 2806-2809, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35648935

Traditional monolithic fiber lasers can only achieve unidirectional high-power laser output. In this Letter, a novel high-power linear cavity fiber laser that can achieve bidirectional high-power output is proposed and demonstrated. In an ordinary laser resonant cavity, we replace the high-reflectivity fiber Bragg grating with a low-reflectivity fiber Bragg grating to realize bidirectional laser output. In our experiment, the laser cavity was composed of two fiber Bragg gratings with a reflectivity of about 10%. The pump power provided by the 976 nm laser diodes was injected into a double-clad Yb-doped fiber with core/cladding diameters of 20/400 µm. At the maximum pump power, the bidirectional output powers were 2025 W and 1948 W, respectively, and the output laser beam quality (M2 factor) at both ends was about 1.5. For the first time, to the best of our knowledge, the feasibility of a bidirectional output fiber laser that can achieve double high (2-kW-level) power was verified. Compared with a traditional unidirectional output laser, this type of bidirectional output laser can achieve a double high-power laser by employing a laser resonant cavity. Thus, the average cost and structure size can be further reduced in mass production.

6.
Opt Lett ; 47(9): 2162-2165, 2022 May 01.
Article En | MEDLINE | ID: mdl-35486750

In this Letter, we demonstrate a monolithic high-power master oscillator power amplifier by using a home-made double-clad tapered Yb-doped fiber (T-YDF) with an input end of ∼20/400 µm and an output end of ∼30/600 µm. Thanks to perfect core/cladding matching with the fiber components at both ends of the T-YDF, the laser is pumped bidirectionally and an output power of over 4 kW with a high slope efficiency of 84.1% and excellent beam quality M2 ∼ 1.46 is achieved. In contrast to previous work on common fiber lasers, experimental results also reveal that the co-pump scheme has a higher transverse mode instability (TMI) threshold and power-boosting capability than that of a counter-pump scheme. To the best of our knowledge, this is the highest output power demonstrated to date from such a T-YDF with excellent beam quality. This work indicates the great potential of the T-YDF to realize further power scaling, high laser efficiency, and excellent beam quality in high-power fiber lasers.

7.
Opt Lett ; 47(3): 493-496, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-35103663

Random Raman fiber laser (RRFL) has been widely studied in high-power laser generation due to its special lasing characteristics. However, all previous high-power results are based on the half-open cavity. In this letter, we demonstrate an applicable high-power RRFL with the simplest structure, that is, a full-open cavity. The lasing dynamic and output characteristics are theoretically and experimentally studied. Laser source with multi-longitudinal modes can result in the random laser output from one side even in the full-open cavity. The ratio of the backward output power is mainly determined by the reflectivity of fiber ends. The experimental results show that such a simple structure can easily generate kilowatts of random laser power and is a promising setup to achieve higher output power, which is also an important platform to study the laser dynamic in high-power full-open cavity without any point-action or regular distributed reflectors.

8.
Opt Lett ; 47(22): 5809-5812, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-37219109

A simple generation method for a supercontinuum (SC) based on Raman mode locking (RML) in a quasi-continuous wave (QCW) fiber laser oscillator is demonstrated experimentally and analyzed in this paper. The power of the SC is adjustable by changing the pump repetition rate and duty cycle. Under the pump repetition rate of 1 kHz and duty cycle of 11.5%, an SC output with a spectral range of 1000-1500 nm is obtained at a maximum output power of 791 W. The RML is fully analyzed in terms of the spectral and temporal dynamics. RML plays a major role in this process and further enriches the generation of the SC. To the best of the authors' knowledge, this is the first report on directly generating a high and adjustable average power SC using a large-mode-area (LMA)-based oscillator, which provides a proof-of-concept experiment for achieving a high average power SC source and greatly improves the potential application value of the SC source.

9.
Opt Lett ; 46(22): 5778-5781, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34780460

A novel fiber laser called an oscillating-amplifying integrated fiber laser was studied experimentally, in which the oscillating section and amplifying section share the pump between them. Based on this configuration, a 5-kW fiber laser system with optical-optical efficiency of 80.9% and M2 factor of 1.5 was achieved. The startup and shutdown sequence of the laser was studied in detail. When pumps of the laser were deliberately turned on in an inverted order, such as switching on/off the amplifying section before/after the oscillating section, which is normally disastrous in a classic fiber amplifier, the laser system turned out to operate stably at full power level. Thus, it is verified that there is no priority between the amplifier and the seed in this laser system. It combines the advantages of conventional fiber oscillators and fiber amplifiers, including high efficiency, high reliability, good anti-backreflection, and simple control logic.

10.
Opt Express ; 29(17): 26366-26374, 2021 Aug 16.
Article En | MEDLINE | ID: mdl-34615073

The transverse mode instability (TMI) has been one of the main limitations for the power scaling of single mode fiber lasers. In this work, we report a 6 kW single mode monolithic fiber laser enabled by effective mitigation of the TMI. The fiber laser employs a custom-made wavelength-stabilized 981 nm pump source, which remarkably enhanced the TMI threshold compared with the wavelength of 976 nm. With appropriately distributing bidirectional pump power, the monolithic fiber laser is scaled to 6 kW with single mode beam quality (M2<1.3). The stability is verified in a continuous operation for over 2 hours with power fluctuation below 1%.

11.
Sci Rep ; 10(1): 9006, 2020 Jun 02.
Article En | MEDLINE | ID: mdl-32488090

In this manuscript, we studied the thermal properties of hundred-watt fiber laser oscillator by real-time in-situ distributed temperature measurement. Optical frequency domain reflectometry (OFDR) was introduced to measure the temperature distribution of gain fiber core. The fiber laser oscillator operated at 1080 nm and the wavelength of detecting signal from OFDR was ~1550 nm. The maximum output power of this fiber oscillator was 100 W. The fiber core temperature distributions in experiment agree well with our theoretical simulation. The temperature measurement of gain fiber core in oscillator has always been a problem because the backward laser from the oscillator may reduce the signal-to-noise ratio in OFDR. To the best of our knowledge, this is the first temperature distribution measurement of fiber core in hundred-watt oscillator. By the experimental measurement and theoretical model, we also analyzed the thermal properties of laser oscillator respectively pumped by 915 nm and 976 nm LD sources. We found fiber laser oscillator pumped by 976 nm LD sources experienced not only higher maximum thermal load but also higher average thermal load than that pumped by 915 nm LD sources at the same level output power. We also analyzed the fiber core temperature of other components in system, such as combiners and fiber Bragg gratings (FBG). These results are meaningful for us to improve the thermal design and management in fiber lasers.

12.
Opt Express ; 27(5): 7585-7592, 2019 Mar 04.
Article En | MEDLINE | ID: mdl-30876320

In the power scaling of monolithic fiber lasers, the fiber nonlinear effects and transverse mode instability are main limitations. The tapered gain fiber has a longitudinally varying mode area, which has the advantage of mitigating fiber nonlinear effects. However, the transverse mode instability (TMI) was seldom reported in the tapered fiber lasers at high average power levels. In this work, we have constructed a monolithic tapered ytterbium-doped fiber laser oscillator and investigated the laser oscillator performance with respective 976 nm and 915 nm pump, especially on the aspects of the TMI. The double cladding tapered ytterbium-doped fiber has a narrow end of ~20/400 µm and a wide end of ~30/600 µm. Fiber Bragg gratings (FBG) are respectively inscribed on double cladding fibers with core/inner cladding diameter of 20/400 µm and 30/400 µm to match with the narrow and wide end of the tapered ytterbium-doped fiber. When 915 nm pump is employed, the TMI occurs at the output power of ~1350 W. The output power is further scaled to a maximum of 1720 W. The M2 factor of the output laser is ~2.1 and the full width at half maximum (FWHM) of the signal laser is ~3.6 nm. To the best of our knowledge, this is the highest average power for the tapered ytterbium-doped fiber lasers.

13.
Opt Express ; 25(19): 23275-23282, 2017 Sep 18.
Article En | MEDLINE | ID: mdl-29041628

We report a high power transverse-mode-switchable fiber laser in a master oscillator power amplifier (MOPA) configuration. The output modes of a few-mode fiber amplifier can be actively controlled by the input polarization state of the fundamental mode seed laser using SPGD algorithm. A fast, stable and safety mode switching between LP01 and LP11 modes is achieved in the amplifier at output power of 500 W level.

14.
Opt Express ; 24(24): 27828-27835, 2016 Nov 28.
Article En | MEDLINE | ID: mdl-27906351

Transverse mode instability (TMI) is one of the main limiting factors in kW-level fiber lasers. Unlike fiber amplifiers, TMI in fiber laser oscillators attracts less attention from researchers. In this work, we construct an all-fiber ytterbium-doped laser oscillator and investigate the performance in co-pumping and bidirectional-pumping configurations, respectively. In the co-pumping scheme, TMI occurs at ~1.6kW and restricts further output power scaling. Different from the characteristic of dynamic TMI in fiber amplifiers, quasi-static TMI is observed in the laser oscillator. Details of the temporal characteristic around the TMI threshold are provided. In the bidirectional-pumping scheme, experimental results validate that the TMI is mitigated notably by employing bidirectional-pumping instead of co-pumping. The output laser power is further scaled to 2.5kW with a slope efficiency of 74.5% and good beam quality (M2~1.3). At the maximum power, the FWHM bandwidth of optical spectra is 5.2nm, and the Raman stokes light is ~20dB below the signal.

...