Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 309
1.
J Drugs Dermatol ; 23(5): e134-e136, 2024 05 01.
Article En | MEDLINE | ID: mdl-38709689

BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease that generates multiple cytokines. Here, we present an example of the cytokines forming a cytokine storm and its effects on the patient. CASE PRESENTATION: We report the case of a 55-year-old man who had severe but stable HS. Serum samples were collected from the patient and extraordinarily elevated cytokine concentrations were identified in the patient's serum.  Conclusion: Cytokine storms may be a condition associated with HS posing additional risk to patient survival. J Drugs Dermatol. 2024;23(5):e134-e136.     doi:10.36849/JDD.7860R1e.


Hidradenitis Suppurativa , Humans , Hidradenitis Suppurativa/immunology , Hidradenitis Suppurativa/diagnosis , Hidradenitis Suppurativa/blood , Hidradenitis Suppurativa/complications , Male , Middle Aged , Cytokines/blood , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/blood , Severity of Illness Index
2.
bioRxiv ; 2024 May 05.
Article En | MEDLINE | ID: mdl-38746316

We previously demonstrated in baboons that maternal undernutrition (MUN), achieved by 70 % of control nutrition, impairs fetal liver function, but long-term changes associated with aging in this model remain unexplored. Here, we assessed clinical phenotypes of liver function, mitochondrial bioenergetics, and protein abundance in adult male and female baboons exposed to MUN during pregnancy and lactation and their control counterparts. Plasma liver enzymes were assessed enzymatically. Liver glycogen, choline, and lipid concentrations were quantified by magnetic resonance spectroscopy. Mitochondrial respiration in primary hepatocytes under standard culture conditions and in response to metabolic (1 mM glucose) and oxidative (100 µM H 2 O 2 ) stress were assessed with Seahorse XFe96. Hepatocyte mitochondrial membrane potential (MMP) and protein abundance were determined by tetramethylrhodamine ethyl ester staining and immunoblotting, respectively. Liver enzymes and metabolite concentrations were largely unaffected by MUN, except for higher aspartate aminotransferase levels in MUN offspring when male and female data were combined. Oxygen consumption rate, extracellular acidification rate, and MMP were significantly higher in male MUN offspring relative to control animals under standard culture. However, in females, cellular respiration was similar in control and MUN offspring. In response to low glucose challenge, only control male hepatocytes were resistant to low glucose-stimulated increase in basal and ATP-linked respiration. H 2 O 2 did not affect hepatocyte mitochondrial respiration. Protein markers of mitochondrial respiratory chain subunits, biogenesis, dynamics, and antioxidant enzymes were unchanged. Male-specific increases in mitochondrial bioenergetics in MUN offspring may be associated with increased energy demand in these animals. The similarity in systemic liver parameters suggests that changes in hepatocyte bioenergetics capacity precede detectable circulatory hepatic defects in MUN offspring and that the mitochondria may be an orchestrator of liver programming outcome.

3.
Food Chem ; 452: 139474, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38744126

In order to prevent the photooxidation of phytosterols, a new type of Pickering emulsion was developed by regulating the oriented distribution of antioxidants in colloidal lipid particles (CLPs) at the oil-water interface. High-melting-point and low-melting-point lipids were tested to modulate their protective effect against phytosterols photooxidation. Results showed that CLPs could stabilize Pickering emulsion and encapsulate antioxidants, providing a dual functional delivery system for phytosterols protection. The Pickering emulsion formed had a particle size of around 350-820 nm, and the crystallization and melting temperatures of tripalmitin particles were approximately 32 °C and 63.8 °C, respectively. The addition of tributyrin or tricaprylin reduced the crystallization and melting temperatures of Pal CLPs and improved the photooxidation emulsion stability. The prepared Pickering emulsion remained stable for a maximum of 12 days under accelerated light-induced oxidation. Among all formulations, the emulsion primarily composed of tripalmitin CLPs, with added tributyrin and resveratrol, exhibited the highest photooxidation stability.

4.
Sci Rep ; 14(1): 10945, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740919

To investigate the significance of atherosclerotic plaque location in hybrid surgery comprising both endovascular recanalization approaches and carotid endarterectomy for symptomatic atherosclerotic non-acute long-segment occlusion of the internal carotid artery (ICA), 162 patients were enrolled, including 120 (74.1%) patients in the proximal plaque group and 42 (25.9%) in the distal plaque group. Surgical recanalization was performed in all patients, with successful recanalization in 119 (99.2%) patients in the proximal and 39 (92.9%) in the distal plaque group. The total successful recanalization rate was 97.5% (158/162) with a failure rate of 2.5% (4/162). Periprocedural complications occurred in 5 (4.2% or 5/120) patients in the proximal plaque group, including neck infection in two (1.7%), recurrent nerve injury in 1 (0.8%), and laryngeal edema in 2 (1.7%), and 2 (4.8%) in the distal plaque group, including femoral puncture infection in 2 (4.8%). No severe complications occurred in either group. Univariate analysis showed plaque location was a significant (P = 0.018) risk factor for successful recanalization, and multivariate analysis indicated that the plaque location remained a significant independent risk factor for recanalization success (P = 0.017). In follow-up 6-48 months after the recanalization surgery, reocclusion occurred in two (2.8%) patients in the proximal plaque group and 4 (13.3%) in the distal plaque group. In conclusion, although hybrid surgery achieves similar outcomes in patients with ICA occlusion caused by either proximal or distal atherosclerotic plaques, plaque location may be a significant risk factor for successful recanalization of symptomatic non-acute long-segment ICA occlusion.


Carotid Artery, Internal , Carotid Stenosis , Endarterectomy, Carotid , Plaque, Atherosclerotic , Humans , Male , Female , Aged , Plaque, Atherosclerotic/surgery , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/complications , Carotid Artery, Internal/surgery , Carotid Artery, Internal/pathology , Middle Aged , Carotid Stenosis/surgery , Carotid Stenosis/pathology , Carotid Stenosis/complications , Endarterectomy, Carotid/methods , Treatment Outcome , Endovascular Procedures/methods , Aged, 80 and over , Risk Factors
5.
Eur J Med Chem ; 272: 116473, 2024 May 04.
Article En | MEDLINE | ID: mdl-38718625

Fibroblast growth factor receptor 2 (FGFR2) represents an appealing therapeutic target for multiple cancers, yet no selective FGFR2 inhibitors have been approved for clinical use to date. Here, we report the discovery of a series of new selective, irreversible FGFR2 inhibitors. The representative compound LHQ490 potently inhibited FGFR2 kinase activity with an IC50 of 5.2 nM, and was >61-, >34-, and >293-fold selective against FGFR1, FGFR3, and FGFR4, respectively. LHQ490 also exhibited high selectivity in a panel of 416 kinases. Cell-based studies revealed that LHQ490 efficiently suppressed the proliferation of BaF3-FGFR2 cells with an IC50 value of 1.4 nM, and displayed >70- and >714-fold selectivity against BaF3-FGFR1 and the parental BaF3 cells, respectively. More importantly, LHQ490 potently suppressed the FGFR2 signaling pathways, selectively inhibited FGFR2-driven cancer cell proliferation, and induced apoptosis of FGFR2-driven cancer cells. Taken together, this study provides a potent and highly selective FGFR2 inhibitor for further development of FGFR2-targeted therapeutic agents.

6.
Int Immunopharmacol ; 134: 112224, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723370

Immunotherapy is becoming increasingly important, but the overall response rate is relatively low in the treatment of gastric cancer (GC). The application of tumor mutational burden (TMB) in predicting immunotherapy efficacy in GC patients is limited and controversial, emphasizing the importance of optimizing TMB-based patient selection. By combining TMB and major histocompatibility complex (MHC) related hub genes, we established a novel TM-Score. This score showed superior performance for immunotherapeutic selection (AUC = 0.808) compared to TMB, MSI status, and EBV status. Additionally, it predicted the prognosis of GC patients. Subsequently, a machine learning model adjusted by the TM-Score further improved the accuracy of survival prediction (AUC > 0.8). Meanwhile, we found that GC patients with low TM-Score had a higher mutation frequency, higher expression of HLA genes and immune checkpoint genes, and higher infiltration of CD8+ T cells, CD4+ helper T cells, and M1 macrophages. This suggests that TM-Score is significantly associated with tumor immunogenicity and tumor immune environment. Notably, based on the RNA-seq and scRNA-seq, it was found that AKAP5, a key component gene of TM-Score, is involved in anti-tumor immunity by promoting the infiltration of CD4+ T cells, NK cells, and myeloid cells. Additionally, siAKAP5 significantly reduced MHC-II mRNA expression in the GC cell line. In addition, our immunohistochemistry assays confirmed a positive correlation between AKAP5 and human leukocyte antigen (HLA) expression. Furthermore, AKAP5 levels were higher in patients with longer survival and those who responded to immunotherapy in GC, indicating its potential value in predicting prognosis and immunotherapy outcomes. In conclusion, TM-Score, as an optimization of TMB, is a more precise biomarker for predicting the immunotherapy efficacy of the GC population. Additionally, AKAP5 shows promise as a therapeutic target for GC.

7.
Antibiotics (Basel) ; 13(4)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38667031

Enrofloxacin is a broad-spectrum antimicrobial agent, but the study of its pharmacokinetics/pharmacodynamics (PKs/PDs) in donkeys is rarely reported. The present study aimed to investigate the pharmacokinetics of enrofloxacin administered intragastrically, and to study the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in plasma, urine, and feces, and the PK/PD parameters were investigated to provide a rationale for enrofloxacin treatment in donkeys. A total of five healthy donkeys were selected for intragastric administration of 7.5 mg·kg-1 BW of enrofloxacin by gavage, and blood, urine, and fecal samples were collected. The results showed that the elimination half-life of plasma enrofloxacin was 11.40 ± 6.40 h, Tmax was 0.55 ± 0.12 h, Cmax was 2.46 ± 0.14 mg·L-1, AUC0-∞ was 10.30 ± 3.37 mg·L-1·h, and mean residence time (MRT) was 7.88 ± 1.26 h. The Tmax of plasma ciprofloxacin was 0.52 ± 0.08 h, Cmax was 0.14 ± 0.03 mg·L-1, and AUC0-∞ was 0.24 ± 0.16 mg·L-1·h. Urinary Cmax was 38.18 ± 8.56 mg·L-1 for enrofloxacin and 15.94 ± 4.15 mg·L-1 for ciprofloxacin. The total enrofloxacin and ciprofloxacin recovered amount in urine was 7.09 ± 2.55% of the dose for 144 h after dosing. The total enrofloxacin and ciprofloxacin recovered amount in feces was 25.73 ± 10.34% of the dose for 144 h after dosing. PK/PD parameters were also examined in this study, based on published MICs. In conclusion, 7.5 mg/kg BW of enrofloxacin administered intragastrically to donkeys was rapidly absorbed, widely distributed, and slowly eliminated in their bodies, and was predicted to be effective against bacteria with MICs < 0.25 mg·L-1.

8.
Food Chem ; 451: 139292, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38663239

Phytosterol, recognized for its health benefits, is predominantly extracted from plants and exhibits significantly reduced stability under varying light conditions. Their photooxidation is significantly influenced by emulsion interfaces. This study examined the mechanism of interface structure on phytosterol photooxidation with unparalleled molecular precision, utilizing molecular dynamics simulations and experimental procedures. Hydrogen bonding between the hydroxyl group at the C3 position of phytosterols and water molecules, coupled with van der Waals forces between the hydrophobic regions and the oil phase, induced phytosterol molecules to disperse toward the interface. The elevated polarity of the oil phase, specifically in tributyrin, facilitated the permeation of water molecules into the oil phase. This was achieved by diminishing the emulsion's interfacial tension, thereby fostering the development of more interface or micelles, and accelerating the photooxidation process of phytosterols. These simulations unraveled that the preponderance of phytosterol distribution is localized and oxidized at the oil-water interface.

9.
J Sci Food Agric ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38619986

BACKGROUND: Sea buckthorn has the functions of antioxidation, antitumor, anti-inflammation and regulating energy metabolism. In order to investigate the effects of sea buckthorn powder and sea buckthorn flavonoids on the antioxidant properties, immune function and muscle fatty acid composition of common carp, an oral feeding experiment was carried out. RESULTS: The administration of glucose significantly reduced the levels of glutathione and the activity of total antioxidant capacity enzyme in serum and hepatopancreas, while concurrently upregulating the level of malondialdehyde (MDA)(P < 0.05). Conversely, oral intake of sea buckthorn powder and flavonoids increased antioxidant enzyme activity and decreased MDA levels. In terms of antioxidant molecular indicators, sea buckthorn powder and sea buckthorn flavonoids significantly increased the mRNA levels of nuclear factor NF-E2-related factor (nrf2) in the hepatopancreas and muscle. Meanwhile, mRNA expression levels of downstream antioxidant-related genes (gr, cat, gpx, and sod) regulated by Nrf2 were also upregulated. In the immune aspects, the mRNA expression levels of proinflammatory cytokines, such as interleukin-6 (il-6), interleukin-1ß (il-1ß) and nuclear factor-κB (nf-κb), were reduced but the expressions of anti-inflammatory cytokines, such as growth factor-ß (tgf-ß) and interleukin-10 (il-10), were enhanced in the head kidney and spleen tissues after oral administration with sea buckthorn. In terms of muscle fatty acid composition, the ratio of n-3 polyunsaturated fatty acid (PUFA)/n-6 PUFA was notably higher after administering sea buckthorn flavonoids than that of the glucose group (P < 0.05). CONCLUSION: This study demonstrated that oral administration of sea buckthorn powder and sea buckthorn flavonoids significantly enhanced the antioxidant capacity and immune response and improved the muscle fatty acid compositions in common carp, and also mitigated the adverse effects of glucose treatment to a certain extent. © 2024 Society of Chemical Industry.

10.
J Exp Clin Cancer Res ; 43(1): 121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654356

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and chemotherapy still serves as the cornerstone treatment functioning by inducing cytotoxic cell death. Notably, emerging evidence suggests that dying cell-released signals may induce cancer progression and metastasis by modulating the surrounding microenvironment. However, the underlying molecular mechanisms and targeting strategies are yet to be explored. METHODS: Apoptotic TNBC cells induced by paclitaxel or adriamycin treatment were sorted and their released extracellular vesicles (EV-dead) were isolated from the cell supernatants. Chemokine array analysis was conducted to identify the crucial molecules in EV-dead. Zebrafish and mouse xenograft models were used to investigate the effect of EV-dead on TNBC progression in vivo. RESULTS: It was demonstrated that EV-dead were phagocytized by macrophages and induced TNBC metastasis by promoting the infiltration of immunosuppressive PD-L1+ TAMs. Chemokine array identified CXCL1 as a crucial component in EV-dead to activate TAM/PD-L1 signaling. CXCL1 knockdown in EV-dead or macrophage depletion significantly inhibited EV-dead-induced TNBC growth and metastasis. Mechanistic investigations revealed that CXCL1EV-dead enhanced TAM/PD-L1 signaling by transcriptionally activating EED-mediated PD-L1 promoter activity. More importantly, TPCA-1 (2-[(aminocarbonyl) amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide) was screened as a promising inhibitor targeting CXCL1 signals in EVs to enhance paclitaxel chemosensitivity and limit TNBC metastasis without noticeable toxicities. CONCLUSIONS: Our results highlight CXCL1EV-dead as a novel dying cell-released signal and provide TPCA-1 as a targeting candidate to improve TNBC prognosis.


B7-H1 Antigen , Chemokine CXCL1 , Extracellular Vesicles , Signal Transduction , Triple Negative Breast Neoplasms , Tumor-Associated Macrophages , Animals , Female , Humans , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Extracellular Vesicles/metabolism , Neoplasm Metastasis , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Zebrafish , Tumor-Associated Macrophages/metabolism
11.
J Vet Pharmacol Ther ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598665

Tilmicosin, a macrolide antibiotic, has the potential to treat bacterial infections in donkeys. However, the pharmacokinetics of tilmicosin in donkeys have not been reported. The aim of this study was to investigate the pharmacokinetics of tilmicosin in donkey plasma, urine, and feces after a single intragastric administration to determine the suitability of tilmicosin for donkeys. A total of 5 healthy male donkeys with similar body weights were selected. The donkeys were administered a single dose of 10 mg · kg-1 body weight (BW) tilmicosin by gavage. The concentrations of tilmicosin in plasma, urine, and feces were determined. The results showed that after a single intragastric administration of 10 mg · kg-1 body weight, tilmicosin in donkey plasma reached a maximum concentration of 11.23 ± 5.37 mg · L-1 at 0.80 ± 0.10 h, with a half-life of 14.49 ± 7.13 h, a mean residence time of 28.05 ± 3.05 h, a Cl/F of 0.48 ± 0.18 L · kg-1 · h-1, and a Vd/F of 9.28 ± 2.63 Lkg-1. The percentage of tilmicosin excreted through the urine of donkeys is 2.47%, and the percentage excreted through the feces is 66.43%. Our study provides data to inform the use of tilmicosin in donkeys.

12.
Ecotoxicology ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592644

Global pesticide usage reaching 2.7 million metric tons annually, brings a grave threat to non-target organisms, especially aquatic organisms, resulting in serious concerns. Predicting aquatic toxicity of pesticides towards Daphnia magna is significant. In this work, random forest (RF) algorithm, together with ten Dragon molecular descriptors, was successfully utilized to develop a quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for the toxicity pEC50 of 745 pesticides towards Daphnia magna. The optimal QSTR model (RF Model I) based on the RF parameters of ntree = 50, mtry = 3 and nodesize = 5, yielded R2 = 0.877, MAE = 0.570, rms = 0.739 (training set of 596 pEC50), R2 = 0.807, MAE = 0.732, rms = 0.902 (test set of 149 pEC50), and R2 = 0.863, MAE = 0.602, rms = 0.774 (total set of 745 pEC50), which are accurate and satisfactory. The optimal RF model is comparable to other published QSTR models for Daphnia magna, although the optimal RF model possessed a small descriptor subset and dealt with a large dataset of pesticide toxicity pEC50. Thus, the investigation in this work provides a reliable, applicable QSTR model for predicting the toxicity pEC50 of pesticides towards Daphnia magna.

13.
World J Surg Oncol ; 22(1): 116, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689335

PURPOSE: The objective of this paper is to offer a thorough examination of the clinical presentations, etiology, and treatment strategies associated with perivascular epithelioid cell tumors (PEComas). METHODS: This retrospective study examined the comprehensive archival data of PEComa cases diagnosed at Beijing Hospital from 2015 to 2023. The pathology slides of all patients were thoroughly reassessed by two experienced pathologists. A thorough retrospective analysis was undertaken, incorporating clinicopathological data including gender, age at diagnosis, initial clinical manifestations, signs, disease onset site, tumor markers, imaging findings, therapeutic modalities, pathological features, immunohistochemical profiles, treatment responses, and prognostic indicators. Patients were evaluated for disease severity according to established pathological classification criteria and were followed up until the designated analysis cut-off date. In instances where patients were unable to be monitored on-site, they were contacted via telephone for postoperative follow-up inquiries. RESULTS: This study included 11 patients with ages ranging from 17 to 66 years old, presenting with the disease in multiple anatomical sites, including the retroperitoneum (2/11), liver (4/11), kidney (4/11), lung (1/11), and broad ligament of the uterus (1/11). Most patients presented with non-specific clinical symptoms and were subsequently diagnosed with space-occupying lesions upon physical examination. The tumor demonstrated progressive growth and enlargement, which could result in compression of neighboring organs. Preoperative imaging alone is insufficient for a definitive diagnosis of PEComa, but MRI can provide an initial evaluation of the tumor's potential malignancy. Molecular marker testing specific to PEComa, such as HMB-45 (90.0%), SMA (81.8%), Melan-A (90.9%), vimentin (90.9%), and Desmin (36.3%), was conducted on all patients. No adjuvant therapies were administered postoperatively. Upon analysis, no instances of relapse at the primary site or the development of new tumors at other sites were observed. Regular imaging reviews of three patients with malignant PEComa post-surgery showed no evidence of recurrence. CONCLUSIONS: The clinical presentation, tumor biomarkers, and imaging characteristics of PEComa lack specificity, necessitating dependence on pathology and immunohistochemistry for precise diagnosis. The mainstay of treatment consists of surgical resection, with patients typically experiencing a favorable prognosis.


Perivascular Epithelioid Cell Neoplasms , Humans , Perivascular Epithelioid Cell Neoplasms/pathology , Perivascular Epithelioid Cell Neoplasms/surgery , Perivascular Epithelioid Cell Neoplasms/diagnosis , Perivascular Epithelioid Cell Neoplasms/metabolism , Female , Retrospective Studies , Middle Aged , Male , Adult , Aged , Adolescent , Young Adult , Prognosis , Follow-Up Studies , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/surgery , Lung Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/surgery , Kidney Neoplasms/diagnosis , Liver Neoplasms/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Retroperitoneal Neoplasms/pathology , Retroperitoneal Neoplasms/surgery , Retroperitoneal Neoplasms/diagnosis , Retroperitoneal Neoplasms/diagnostic imaging
14.
Chemosphere ; 355: 141680, 2024 May.
Article En | MEDLINE | ID: mdl-38479683

In this study, a novel Fe3O4-based biochar coupled surface-imprinted polymer was constructed via simple hydrothermal route for salicylic acid recognition and degradation in advanced oxidation processes. The material exhibited excellent adsorption capability, up to 118.23 mg g-1, and efficient degradation performance, 87.44% removal rate within 240 min, based on integrating the advantages of both huge specific surface area as well as abundant functional groups from biochars and specific recognition sites from imprinted cavities. Moreover, high selectivity coefficient (11.67) showed stable recognition in single and binary systems. SO4•- and •OH were confirmed as reactive oxygen species in catalytic reaction according to quenching experiments and EPR analysis. The degradation mechanism and pathway were unraveled by DFT calculations and LC-MS. Furthermore, the results of toxicity evaluation, stability and reusability demonstrated application potential in the field of water environment restoration. This study confirmed that molecular imprinting provided a promising solution to targeted removal of emerging environmental pollutants by degrading after the enrichment of pollutants to the composites surface.


Charcoal , Molecular Imprinting , Wastewater , Molecularly Imprinted Polymers , Salicylic Acid , Polymers , Molecular Imprinting/methods , Adsorption
15.
J Nanobiotechnology ; 22(1): 122, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504208

Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.


Breast Neoplasms , Flavanones , Nanoparticles , Humans , Mice , Animals , Female , Breast Neoplasms/pathology , Zebrafish/metabolism , Receptors, Estrogen/metabolism , Estrogens/metabolism , Estrogens/therapeutic use , Tamoxifen/pharmacology , Estradiol/pharmacology , Liver/metabolism
16.
Database (Oxford) ; 20242024 Mar 27.
Article En | MEDLINE | ID: mdl-38537199

Pangenomes, capturing the genetic diversity of a species or genus, are essential to understanding the ecology, pathobiology and evolutionary mechanisms of fungi that cause infection in crops and humans. However, fungal pangenome databases remain unavailable. Here, we report the first fungal pangenome database, specifically for Fusarium oxysporum species complex (FOSC), a group of cross-kingdom pathogens causing devastating vascular wilt to over 100 plant species and life-threatening fusariosis to immunocompromised humans. The F. oxysporum Pangenome Database (FoPGDB) is a comprehensive resource integrating 35 high-quality FOSC genomes, coupled with robust analytical tools. FoPGDB allows for both gene-based and graph-based exploration of the F. oxysporum pangenome. It also curates a large repository of putative effector sequences, crucial for understanding the mechanisms of FOSC pathogenicity. With an assortment of functionalities including gene search, genomic variant exploration and tools for functional enrichment, FoPGDB provides a platform for in-depth investigations of the genetic diversity and adaptability of F. oxysporum. The modular and user-friendly interface ensures efficient data access and interpretation. FoPGDB promises to be a valuable resource for F. oxysporum research, contributing to our understanding of this pathogen's pangenomic landscape and aiding in the development of novel disease management strategies. Database URL: http://www.fopgdb.site.


Fusarium , Humans , Fusarium/genetics , Crops, Agricultural , Phylogeny
17.
J Cancer ; 15(8): 2229-2244, 2024.
Article En | MEDLINE | ID: mdl-38495507

Background: Keratin 80(KRT80) encodes a type II intermediate filament protein, known for maintaining cell integrity of cells and its involvement in the tumorigenesis and progression of various cancers. However, comprehensive research on its relevance to lung adenocarcinoma remains limited. Methods: In this study, we utilized multiple databases to investigate the transcriptional expression of KRT80 and its correlation with clinicopathological features. A range of assays, including the Cell Counting Kit 8 assay, colony formation assay, cell migration assay, and flow cytometry, were employed to elucidate the impact of KRT80 on the malignant behavior of lung adenocarcinoma. Immunoprecipitation and mass spectrometry were also used to identify putative genes interacting with KRT80. Results: The expression of KRT80 was elevated in lung adenocarcinoma and patients with high levels of KRT80 expression had poor clinical outcomes. Silencing KRT80 suppressed cell viability, and migration, while overexpression had the opposite effect. In addition, Immunoprecipitation and mass spectrometry revealed an interaction between KRT80 and valosin-containing protein (VCP), with VCP knockdown reducing the stability of KRT80 protein. Overexpression of KRT80 mitigated the inhibitory effect of VCP knockdown to some extent. Conclusion: Our findings collectively suggest that KRT80 is a promising diagnostic and prognostic indicator for lung adenocarcinoma. Additionally, the interaction between KRT80 and VCP plays a crucial role in the progression of lung adenocarcinoma, which implies that KRT80 is a promising therapeutic target.

18.
Front Immunol ; 15: 1370254, 2024.
Article En | MEDLINE | ID: mdl-38524134

Introduction: Systemic Lupus Erythematosus (SLE) impacts the central nervous system (CNS), leading to severe neurological and psychiatric manifestations known as neuropsychiatric lupus (NPSLE). The complexity and heterogeneity of clinical presentations of NPSLE impede direct investigation of disease etiology in patients. The limitations of existing mouse models developed for NPSLE obstruct a comprehensive understanding of this disease. Hence, the identification of a robust mouse model of NPSLE is desirable. Methods: C57BL/6 mice transgenic for human MeCP2 (B6.Mecp2Tg1) were phenotyped, including autoantibody profiling through antigen array, analysis of cellularity and activation of splenic immune cells through flow cytometry, and measurement of proteinuria. Behavioral tests were conducted to explore their neuropsychiatric functions. Immunofluorescence analyses were used to reveal altered neurogenesis and brain inflammation. Various signaling molecules implicated in lupus pathogenesis were examined using western blotting. Results: B6.Mecp2Tg1 exhibits elevated proteinuria and an overall increase in autoantibodies, particularly in female B6.Mecp2Tg1 mice. An increase in CD3+CD4+ T cells in the transgenic mice was observed, along with activated germinal center cells and activated CD11b+F4/80+ macrophages. Moreover, the transgenic mice displayed reduced locomotor activity, heightened anxiety and depression, and impaired short-term memory. Immunofluorescence analysis revealed IgG deposition and immune cell infiltration in the kidneys and brains of transgenic mice, as well as altered neurogenesis, activated microglia, and compromised blood-brain barrier (BBB). Additionally, protein levels of various key signaling molecules were found to be differentially modulated upon MeCP2 overexpression, including GFAP, BDNF, Albumin, NCoR1, mTOR, and NLRP3. Discussion: Collectively, this work demonstrates that B6.Mecp2Tg1 mice exhibit lupus-like phenotypes as well as robust CNS dysfunctions, suggesting its utility as a new animal model for NPSLE.


Lupus Vasculitis, Central Nervous System , Humans , Animals , Mice , Female , Mice, Transgenic , Mice, Inbred C57BL , Autoantibodies , Phenotype , Proteinuria , Methyl-CpG-Binding Protein 2/genetics
19.
Aquat Toxicol ; 270: 106896, 2024 May.
Article En | MEDLINE | ID: mdl-38490093

Inorganic mercury (IHg) is hazardous to marine organisms especially resulting in neurotoxicity, bivalves are sensitive to pollutants as "ocean sentinel", but data on the neurotoxicity of IHg in bivalves are sparse. So we chosed M. chinensis philippi with typical neural structures in bivalves to investigate the neurotoxicity of IHg, which could be helpful to understand the specificity of neural regulation and the response characteristics of bivalves. After acute exposed to IHg (HgCl2) for 24 h, the metabolites of ganglion tissues in M. chinensis philippi were evaluated using 1H-nuclear magnetic resonance based metabolomics; Ca2+, neurotransmitters (nitric oxide, glutamate, acetylcholine) and related enzymes (calcineurin, nitric oxide synthase and acetylcholinesterase) were measured using biochemical detection. Compared to the control group, the levels of the nitric oxide (81.04 ± 12.84 µmol/g prot) and acetylcholine (30.93 ± 12.57 µg/mg prot) in M. chinensis philippi of IHg-treated were decreased, while glutamate (2.11 ± 0.61 mmol/L) increased significantly; the activity of nitric oxide synthase (679.34 ± 135.33 U/mg prot) was increased, while acetylcholinesterase (1.39 ± 0.44 U/mg prot) decreased significantly, and the activity of calcineurin (0.52 ± 0.02 U/mg prot) had a statistically insignificant increasing tendency. The concentration of Ca2+ (0.92 ± 0.46 mmol/g prot) in the IHg-treated group was significantly higher than that in the control group. OPLS-DA was performed to reveal the difference in metabolites between the control and IHg-challenged groups, the metabolites of glucose, glutamine, inosine, succinate, glutamate, homarine, and alanine were sensitive to IHg, subsequently metabolic pathways that were affected including glucose metabolism, glutamine metabolism, nucleotide metabolism, Krebs cycle, amino acid metabolism and osmotic regulation. In our study, IHg interfered with metabolites in M. chinensis philippi, thus the corresponding metabolic pathways were changed, which influenced the neurotransmitters subsequently. Furthermore, Ca2+overload affected the synthesis or degradation of the neurotransmitters, and then the altered neurotransmitters involved in changes in metabolic pathways again. Overall, we hypothesized that the neurotoxic effects of IHg on bivalve were in close contact with metabolism, neurotransmitters, related enzymes and Ca2+, which could be effective neurotoxic biomarkers for marine environmental quality assessment, and also provide effective data for the study of the regulatory mechanism of the nervous system in response to IHg in bivalves.


Bivalvia , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Mercury/toxicity , Mercury/metabolism , Acetylcholinesterase , Nitric Oxide , Acetylcholine , Calcineurin , Glutamine , Water Pollutants, Chemical/toxicity , Bivalvia/metabolism , Glutamates , Neurotransmitter Agents , Nitric Oxide Synthase , Methylmercury Compounds/toxicity
20.
Energy Environ Sci ; 17(4): 1549-1558, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38384422

Chemical environment and precursor-coordinating molecular interactions within a perovskite precursor solution can lead to important implications in structural defects and crystallization kinetics of a perovskite film. Thus, the opto-electronic quality of such films can be boosted by carefully fine-tuning the coordination chemistry of perovskite precursors via controllable introduction of additives, capable of forming intermediate complexes. In this work, we employed a new type of ligand, namely 1-phenylguanidine (PGua), which coordinates strongly with the PbI2 complexes in the perovskite precursor, forming new intermediate species. These strong interactions effectively retard the perovskite crystallization process and form homogeneous films with enlarged grain sizes and reduced density of defects. In combination with an interfacial treatment, the resulted champion devices exhibit a 24.6% efficiency with outstanding operational stability. Unprecedently, PGua can be applied in various PSCs with different perovskite compositions and even in both configurations: n-i-p and p-i-n, highlighting the universality of this ligand.

...