Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Angew Chem Int Ed Engl ; : e202407273, 2024 May 21.
Article En | MEDLINE | ID: mdl-38770935

A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~ 70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~ 10 - 140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions, will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.

2.
Nature ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38750361

Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.

3.
Nat Commun ; 14(1): 8454, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38114560

Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.

4.
Mater Horiz ; 10(10): 4213-4223, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37477499

Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in µC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.

5.
Nat Commun ; 14(1): 3340, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37286537

It remains challenging to understand the structural evolution of conjugated polymers from single chains to solvated aggregates and film microstructures, although it underpins the performance of optoelectrical devices fabricated via the mainstream solution processing method. With several ensemble visual measurements, here we unravel the morphological evolution process of a model system of isoindigo-based conjugated molecules, including the hidden molecular assembly pathways, the mesoscale network formation, and their unorthodox chain dependence. Short chains show rigid chain conformations forming discrete aggregates in solution, which further grow to form a highly ordered film that exhibits poor electrical performance. In contrast, long chains exhibit flexible chain conformations, creating interlinked aggregates networks in solution, which are directly imprinted into films, forming interconnective solid-state microstructure with excellent electrical performance. Visualizing multi-level assembly structures of conjugated molecules provides a deep understanding of the inheritance of assemblies from solution to solid-state, accelerating the optimization of device fabrication.

6.
Chem Rev ; 123(12): 7421-7497, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37232480

Polymer semiconductors composed of a carbon-based π conjugated backbone have been studied for several decades as active layers of multifarious organic electronic devices. They combine the advantages of the electrical conductivity of metals and semiconductors and the mechanical behavior of plastics, which are going to become one of the futures of modulable electronic materials. The performance of conjugated materials depends both on their chemical structures and the multilevel microstructures in solid states. Despite the great efforts that have been made, they are still far from producing a clear picture among intrinsic molecular structures, microstructures, and device performances. This review summarizes the development of polymer semiconductors in recent decades from the aspects of material design and the related synthetic strategies, multilevel microstructures, processing technologies, and functional applications. The multilevel microstructures of polymer semiconductors are especially emphasized, which plays a decisive role in determining the device performance. The discussion shows the panorama of polymer semiconductors research and sets up a bridge across chemical structures, microstructures, and finally devices performances. Finally, this review discusses the grand challenges and future opportunities for the research and development of polymer semiconductors.

7.
Nat Commun ; 14(1): 2355, 2023 04 24.
Article En | MEDLINE | ID: mdl-37095082

The emergence of ionic-junction devices has attracted growing interests due to the potential of serving as signal transmission and translation media between electronic devices and biological systems using ions. Among them, fiber-shaped iontronics possesses a great advantage in implantable applications owing to the unique one-dimensional geometry. However, fabricating stable ionic-junction on curved surfaces remains a challenge. Here, we developed a polyelectrolyte based ionic-junction fiber via an integrated opposite charge grafting method capable of large-scale continuous fabrication. The ionic-junction fibers can be integrated into functions such as ionic diodes and ionic bipolar junction transistors, where rectification and switching of input signals are implemented. Moreover, synaptic functionality has also been demonstrated by utilizing the fiber memory capacitance. The connection between the ionic-junction fiber and sciatic nerves of the mouse simulating end-to-side anastomosis is further performed to realize effective nerve signal conduction, verifying the capability for next-generation artificial neural pathways in implantable bioelectronics.


Electronics , Neural Conduction , Animals , Mice , Ions/metabolism , Polyelectrolytes , Sciatic Nerve/metabolism
8.
Adv Sci (Weinh) ; 10(14): e2207023, 2023 05.
Article En | MEDLINE | ID: mdl-36935358

Future brain-computer interfaces will require local and highly individualized signal processing of fully integrated electronic circuits within the nervous system and other living tissue. New devices will need to be developed that can receive data from a sensor array, process these data into meaningful information, and translate that information into a format that can be interpreted by living systems. Here, the first example of interfacing a hardware-based pattern classifier with a biological nerve is reported. The classifier implements the Widrow-Hoff learning algorithm on an array of evolvable organic electrochemical transistors (EOECTs). The EOECTs' channel conductance is modulated in situ by electropolymerizing the semiconductor material within the channel, allowing for low voltage operation, high reproducibility, and an improvement in state retention by two orders of magnitude over state-of-the-art OECT devices. The organic classifier is interfaced with a biological nerve using an organic electrochemical spiking neuron to translate the classifier's output to a simulated action potential. The latter is then used to stimulate muscle contraction selectively based on the input pattern, thus paving the way for the development of adaptive neural interfaces for closed-loop therapeutic systems.


Electronics , Neurons , Reproducibility of Results , Signal Processing, Computer-Assisted , Transistors, Electronic
9.
Nat Mater ; 22(2): 242-248, 2023 02.
Article En | MEDLINE | ID: mdl-36635590

Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion-electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies.


Electrons , Polymers , Neurons/physiology , Signal Transduction , Semiconductors
10.
Nat Commun ; 13(1): 7240, 2022 Nov 24.
Article En | MEDLINE | ID: mdl-36433971

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have attracted increasing interests for (opto)-electronics and spintronics. They generally consist of van der Waals stacked layers and exhibit layer-depended electronic properties. While considerable efforts have been made to regulate the charge transport within a layer, precise control of electronic coupling between layers has not yet been achieved. Herein, we report a strategy to precisely tune interlayer charge transport in 2D c-MOFs via side-chain induced control of the layer spacing. We design hexaiminotriindole ligands allowing programmed functionalization with tailored alkyl chains (HATI_CX, X = 1,3,4; X refers to the carbon numbers of the alkyl chains) for the synthesis of semiconducting Ni3(HATI_CX)2. The layer spacing of these MOFs can be precisely varied from 3.40 to 3.70 Å, leading to widened band gap, suppressed carrier mobilities, and significant improvement of the Seebeck coefficient. With this demonstration, we further achieve a record-high thermoelectric power factor of 68 ± 3 nW m-1 K-2 in Ni3(HATI_C3)2, superior to the reported holes-dominated MOFs.

11.
Nanoscale Adv ; 4(2): 502-509, 2022 Jan 18.
Article En | MEDLINE | ID: mdl-36132699

One of the challenges in integrating nanomechanical resonators made from van der Waals materials in optoelectromechanical technologies is characterizing their dynamic properties from vibrational displacement. Multiple calibration schemes using optical interferometry have tackled this challenge. However, these techniques are limited only to optically thin resonators with an optimal vacuum gap height and substrate for interferometric detection. Here, we address this limitation by implementing a modeling-based approach via multilayer thin-film interference for in situ, non-invasive determination of the resonator thickness, gap height, and motional amplitude. This method is demonstrated on niobium diselenide drumheads that are electromotively driven in their linear regime of motion. The laser scanning confocal configuration enables a resolution of hundreds of picometers in motional amplitude for circular and elliptical devices. The measured thickness and spacer height, determined to be in the order of tens and hundreds of nanometers, respectively, are in excellent agreement with profilometric measurements. Moreover, the transduction factor estimated from our method agrees with the result of other studies that resolved Brownian motion. This characterization method, which applies to both flexural and acoustic wave nanomechanical resonators, is robust because of its scalability to thickness and gap height, and any form of reflecting substrate.

12.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Article En | MEDLINE | ID: mdl-35957105

Nanomechanical resonators made from van der Waals materials (vdW NMRs) provide a new tool for sensing absorbed laser power. The photothermal response of vdW NMRs, quantified from the resonant frequency shifts induced by optical absorption, is enhanced when incorporated in a Fabry-Pérot (FP) interferometer. Along with the enhancement comes the dependence of the photothermal response on NMR displacement, which lacks investigation. Here, we address the knowledge gap by studying electromotively driven niobium diselenide drumheads fabricated on highly reflective substrates. We use a FP-mediated absorptive heating model to explain the measured variations of the photothermal response. The model predicts a higher magnitude and tuning range of photothermal responses on few-layer and monolayer NbSe2 drumheads, which outperform other clamped vdW drum-type NMRs at a laser wavelength of 532 nm. Further analysis of the model shows that both the magnitude and tuning range of NbSe2 drumheads scale with thickness, establishing a displacement-based framework for building bolometers using FP-mediated vdW NMRs.

13.
Macromolecules ; 55(16): 7294-7302, 2022 Aug 23.
Article En | MEDLINE | ID: mdl-36034325

Ladder-type conjugated polymers exhibit a remarkable performance in (opto)electronic devices. Their double-stranded planar structure promotes an extended π-conjugation compared to inter-ring-twisted analogues, providing an excellent basis for exploring the effects of charge localization on polaron formation. Here, we investigated alkali-metal n-doping of the ladder-type conjugated polymer (polybenzimidazobenzophenanthroline) (BBL) through detailed in situ spectroscopic and electrical characterizations. Photoelectron spectroscopy and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy indicate polaron formation upon potassium (K) doping, which agrees well with theoretical predictions. The semiladder BBB displays a similar evolution in the valence band with the appearance of two new features below the Fermi level upon K-doping. Compared to BBL, distinct differences appear in the UV-vis-NIR spectra due to more localized polaronic states in BBB. The high conductivity (2 S cm-1) and low activation energy (44 meV) measured for K-doped BBL suggest disorder-free polaron transport. An even higher conductivity (37 S cm-1) is obtained by changing the dopant from K to lithium (Li). We attribute the enhanced conductivity to a decreased perturbation of the polymer nanostructure induced by the smaller Li ions. These results highlight the importance of polymer chain planarity and dopant size for the polaronic state in conjugated polymers.

15.
Angew Chem Int Ed Engl ; 61(14): e202200221, 2022 Mar 28.
Article En | MEDLINE | ID: mdl-35107203

Strong interchain interactions of conjugated polymers usually result in poor miscibility with molecular dopants, limiting the doping efficiency because of uncontrolled phase separation. We have developed a strategy to achieve efficient charge-transport and high doping miscibility in n-doped conjugated polymers. We solve the miscibility issue through disorder side-chains containing dopants better. Systemic structural characterization reveals a farther side-chain branching point will lead to higher disorders, which provides appropriate sites to accommodate extrinsic molecular dopants without harming original chain packings and charge-transport channels. Therefore, better sustainability of solid-state microstructure is obtained, yielding a stable conductivity even when overloading massive dopants. This work highlights the importance of realizing high host-dopant miscibility in molecular doping of conjugated polymers.

16.
Nat Commun ; 13(1): 901, 2022 02 22.
Article En | MEDLINE | ID: mdl-35194026

Future brain-machine interfaces, prosthetics, and intelligent soft robotics will require integrating artificial neuromorphic devices with biological systems. Due to their poor biocompatibility, circuit complexity, low energy efficiency, and operating principles fundamentally different from the ion signal modulation of biology, traditional Silicon-based neuromorphic implementations have limited bio-integration potential. Here, we report the first organic electrochemical neurons (OECNs) with ion-modulated spiking, based on all-printed complementary organic electrochemical transistors. We demonstrate facile bio-integration of OECNs with Venus Flytrap (Dionaea muscipula) to induce lobe closure upon input stimuli. The OECNs can also be integrated with all-printed organic electrochemical synapses (OECSs), exhibiting short-term plasticity with paired-pulse facilitation and long-term plasticity with retention >1000 s, facilitating Hebbian learning. These soft and flexible OECNs operate below 0.6 V and respond to multiple stimuli, defining a new vista for localized artificial neuronal systems possible to integrate with bio-signaling systems of plants, invertebrates, and vertebrates.


Brain-Computer Interfaces , Robotics , Neuronal Plasticity , Neurons , Silicon , Synapses/physiology
17.
Adv Mater ; 34(4): e2106235, 2022 Jan.
Article En | MEDLINE | ID: mdl-34658088

Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (gm,norm  ≈ 11 S cm-1 ) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm-1  V-1 s-1 ), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.

18.
Nature ; 599(7883): 67-73, 2021 11.
Article En | MEDLINE | ID: mdl-34732866

Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices1-9. N(electron)-doping is fundamentally more challenging than p(hole)-doping and typically achieves a very low doping efficiency (η) of less than 10%1,10. An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability1,5,6,9,11, which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal (for example, Pt, Au, Pd) as vapour-deposited nanoparticles or solution-processable organometallic complexes (for example, Pd2(dba)3) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling greatly increased η in a much shorter doping time and high electrical conductivities (above 100 S cm-1; ref. 12). This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants and semiconductors, thus opening new opportunities in n-doping research and applications12, 13.

19.
Adv Sci (Weinh) ; 8(13): 2005041, 2021 Jul.
Article En | MEDLINE | ID: mdl-34258159

Observation of resonance modes is the most straightforward way of studying mechanical oscillations because these modes have maximum response to stimuli. However, a deeper understanding of mechanical motion can be obtained by also looking at modal responses at frequencies in between resonances. Here, an imaging of the modal responses for a nanomechanical drum driven off resonance is presented. By using the frequency modal analysis, these shapes are described as a superposition of resonance modes. It is found that the spatial distribution of the oscillating component of the driving force, which is affected by both the shape of the actuating electrode and inherent device properties such as asymmetry and initial slack, greatly influences the modal weight or participation. This modal superposition analysis elucidates the dynamics of any nanomechanical system through modal weights. This aids in optimizing mode-specific designs for force sensing and integration with other systems.

20.
Nat Commun ; 12(1): 2354, 2021 Apr 21.
Article En | MEDLINE | ID: mdl-33883549

Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major efforts, no n-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-based n-type conductive ink. BBL:PEI thin films yield an n-type electrical conductivity reaching 8 S cm-1, along with excellent thermal, ambient, and solvent stability. This printable n-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output and n-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance.

...