Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5634, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965224

RESUMEN

3',5'-cyclic uridine monophosphate (cUMP) and 3',5'-cyclic cytidine monophosphate (cCMP) have been established as bacterial second messengers in the phage defense system, named pyrimidine cyclase system for anti-phage resistance (Pycsar). This system consists of a pyrimidine cyclase and a cyclic pyrimidine receptor protein. However, the molecular mechanism underlying cyclic pyrimidine synthesis and recognition remains unclear. Herein, we determine the crystal structures of a uridylate cyclase and a cytidylate cyclase, revealing the conserved residues for cUMP and cCMP production, respectively. In addition, a distinct zinc-finger motif of the uridylate cyclase is identified to confer substantial resistance against phage infections. Furthermore, structural characterization of cUMP receptor protein PycTIR provides clear picture of specific cUMP recognition and identifies a conserved N-terminal extension that mediates PycTIR oligomerization and activation. Overall, our results contribute to the understanding of cyclic pyrimidine-mediated bacterial defense.


Asunto(s)
Pirimidinas , Pirimidinas/química , Pirimidinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Bacteriófagos/metabolismo , Uridina Monofosfato/metabolismo , Uridina Monofosfato/química , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Moleculares , Secuencia de Aminoácidos , Dedos de Zinc
2.
Nat Commun ; 14(1): 8519, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129386

RESUMEN

The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling pathway plays a critical protective role against viral infections. Metazoan STING undergoes multilayers of regulation to ensure specific signal transduction. However, the mechanisms underlying the regulation of bacterial STING remain unclear. In this study, we determined the crystal structure of anti-parallel dimeric form of bacterial STING, which keeps itself in an inactive state by preventing cyclic dinucleotides access. Conformational transition between inactive and active states of bacterial STINGs provides an on-off switch for downstream signaling. Some bacterial STINGs living in extreme environment contain an insertion sequence, which we show codes for an additional long lid that covers the ligand-binding pocket. This lid helps regulate anti-phage activities. Furthermore, bacterial STING can bind cyclic di-AMP in a triangle-shaped conformation via a more compact ligand-binding pocket, forming spiral-shaped protofibrils and higher-order fibril filaments. Based on the differences between cyclic-dinucleotide recognition, oligomerization, and downstream activation of different bacterial STINGs, we proposed a model to explain structure-function evolution of bacterial STINGs.


Asunto(s)
Bacterias , Transducción de Señal , Animales , Ligandos , Bacterias/metabolismo , Genes Bacterianos , Nucleotidiltransferasas/metabolismo , Inmunidad Innata
3.
Nat Commun ; 14(1): 5078, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604815

RESUMEN

Purine-containing nucleotide second messengers regulate diverse cellular activities. Cyclic di-pyrimidines mediate anti-phage functions in bacteria; however, the synthesis mechanism remains elusive. Here, we determine the high-resolution structures of cyclic di-pyrimidine-synthesizing cGAS/DncV-like nucleotidyltransferases (CD-NTases) in clade E (CdnE) in its apo, substrate-, and intermediate-bound states. A conserved (R/Q)xW motif controlling the pyrimidine specificity of donor nucleotide is identified. Mutation of Trp or Arg from the (R/Q)xW motif to Ala rewires its specificity to purine nucleotides, producing mixed purine-pyrimidine cyclic dinucleotides (CDNs). Preferential binding of uracil over cytosine bases explains the product specificity of cyclic di-pyrimidine-synthesizing CdnE to cyclic di-UMP (cUU). Based on the intermediate-bound structures, a synthetic pathway for cUU containing a unique 2'3'-phosphodiester linkage through intermediate pppU[3'-5']pU is deduced. Our results provide a framework for pyrimidine selection and establish the importance of conserved residues at the C-terminal loop for the specificity determination of CD-NTases.


Asunto(s)
Nucleotidiltransferasas , Pirimidinas , Nucleotidiltransferasas/genética , Nucleótidos , Cromogranina A , Nucleótidos de Purina
4.
Int J Biol Macromol ; 237: 123656, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796558

RESUMEN

Under selective pressure, bacteria have evolved diverse defense systems against phage infections. The SMODS-associated and fused to various effector domains (SAVED)-domain containing proteins were identified as major downstream effectors in cyclic oligonucleotide-based antiphage signaling system (CBASS) for bacterial defense. Recent study structurally characterizes a cGAS/DncV-like nucleotidyltransferase (CD-NTase)-associated protein 4 from Acinetobacter baumannii (AbCap4) in complex with 2'3'3'-cyclic AMP-AMP-AMP (cAAA). However, the homologue Cap4 from Enterobacter cloacae (EcCap4) is activated by 3'3'3'-cyclic AMP-AMP-GMP (cAAG). To elucidate the ligand specificity of Cap4 proteins, we determined the crystal structures of full-length wild-type and K74A mutant of EcCap4 to 2.18 and 2.42 Å resolution, respectively. The DNA endonuclease domain of EcCap4 shares similar catalytic mechanism with type II restriction endonuclease. Mutating the key residue K74 in the conserved DXn(D/E)XK motif completely abolishes its DNA degradation activity. The potential ligand-binding cavity of EcCap4 SAVED domain is located adjacent to its N-terminal domain, significantly differing from the centrally located cavity of AbCap4 SAVED domain which recognizes cAAA. Based on structural and bioinformatic analysis, we found that Cap4 proteins can be classified into two types: the type I Cap4, like AbCap4, recognize cAAA and the type II Cap4, like EcCap4, bind cAAG. Several conserved residues identified at the surface of potential ligand-binding pocket of EcCap4 SAVED domain are confirmed by ITC experiment for their direct binding roles for cAAG. Changing Q351, T391 and R392 to alanine abolished the binding of cAAG by EcCap4 and significantly reduced the anti-phage ability of the E. cloacae CBASS system constituting EcCdnD (CD-NTase in clade D) and EcCap4. In summary, we revealed the molecular basis for specific cAAG recognition by the C-terminal SAVED domain of EcCap4 and demonstrates the structural differences for ligand discrimination among different SAVED-domain containing proteins.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Proteínas Bacterianas/química , Oligonucleótidos , Ligandos , GMP Cíclico/metabolismo , Bacterias/metabolismo , AMP Cíclico
5.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 11): 378-385, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322423

RESUMEN

Bacterial capsular polysaccharides provide protection against environmental stress and immune evasion from the host immune system, and are therefore considered to be attractive therapeutic targets for the development of anti-infectious reagents. Here, we focused on CapG, one of the key enzymes in the synthesis pathway of capsular polysaccharides type 5 (CP5) from the opportunistic pathogen Staphylococcus aureus. SaCapG catalyses the 2-epimerization of UDP-N-acetyl-D-talosamine (UDP-TalNAc) to UDP-N-acetyl-D-fucosamine (UDP-FucNAc), which is one of the nucleotide-activated precursors for the synthesis of the trisaccharide repeating units of CP5. Here, the cloning, expression and purification of recombinant SaCapG are reported. After extensive efforts, single crystals of SaCapG were successfully obtained which belonged to space group C2 and exhibited unit-cell parameters a = 302.91, b = 84.34, c = 145.09 Å, ß = 110.65°. The structure was solved by molecular replacement and was refined to 3.2 Šresolution. The asymmetric unit revealed a homohexameric assembly of SaCapG, which was consistent with gel-filtration analysis. Structural comparison with UDP-N-acetyl-D-glucosamine 2-epimerase from Methanocaldococcus jannaschii identified α2, the α2-α3 loop and α10 as a gate-regulated switch controlling substrate entry and/or product release.


Asunto(s)
Polisacáridos Bacterianos , Staphylococcus aureus , Cristalografía por Rayos X , Polisacáridos Bacterianos/química , Methanocaldococcus , Uridina Difosfato
6.
J Food Biochem ; 46(10): e14354, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894128

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several vaccines against SARS-CoV-2 have been approved; however, variants of concern (VOCs) can evade vaccine protection. Therefore, developing small compound drugs that directly block the interaction between the viral spike glycoprotein and ACE2 is urgently needed to provide a complementary or alternative treatment for COVID-19 patients. We developed a viral infection assay to screen a library of approximately 126 small molecules and showed that peimine inhibits VOCs viral infections. In addition, a fluorescence resonance energy transfer (FRET) assay showed that peimine suppresses the interaction of spike and ACE2. Molecular docking analysis revealed that peimine exhibits a higher binding affinity for variant spike proteins and is able to form hydrogen bonds with N501Y in the spike protein. These results suggest that peimine, a compound isolated from Fritillaria, may be a potent inhibitor of SARS-CoV-2 variant infection. PRACTICAL APPLICATIONS: In this study, we identified a naturally derived compound of peimine, a major bioactive alkaloid extracted from Fritillaria, that could inhibit SARS-CoV-2 variants of concern (VOCs) viral infection in 293T/ACE2 and Calu-3 lung cells. In addition, peimine blocks viral entry through interruption of spike and ACE2 interaction. Moreover, molecular docking analysis demonstrates that peimine has a higher binding affinity on N501Y in the spike protein. Furthermore, we found that Fritillaria significantly inhibits SARS-CoV-2 viral infection. These results suggested that peimine and Fritillaria could be a potential functional drug and food for COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Cevanas , Enzima Convertidora de Angiotensina 2/genética , Sitios de Unión , Vacunas contra la COVID-19 , Glicoproteínas , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/química , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas Virales/metabolismo , Internalización del Virus
7.
J Biol Chem ; 298(3): 101658, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101449

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Asunto(s)
Aminoquinolinas , Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Aminoquinolinas/química , Aminoquinolinas/farmacología , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Internalización del Virus/efectos de los fármacos
8.
Nat Commun ; 13(1): 26, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013136

RESUMEN

Mammalian innate immune sensor STING (STimulator of INterferon Gene) was recently found to originate from bacteria. During phage infection, bacterial STING sense c-di-GMP generated by the CD-NTase (cGAS/DncV-like nucleotidyltransferase) encoded in the same operon and signal suicide commitment as a defense strategy that restricts phage propagation. However, the precise binding mode of c-di-GMP to bacterial STING and the specific recognition mechanism are still elusive. Here, we determine two complex crystal structures of bacterial STING/c-di-GMP, which provide a clear picture of how c-di-GMP is distinguished from other cyclic dinucleotides. The protein-protein interactions further reveal the driving force behind filament formation of bacterial STING. Finally, we group the bacterial STING into two classes based on the conserved motif in ß-strand lid, which dictate their ligand specificity and oligomerization mechanism, and propose an evolution-based model that describes the transition from c-di-GMP-dependent signaling in bacteria to 2'3'-cGAMP-dependent signaling in eukaryotes.


Asunto(s)
Bacterias/metabolismo , Inmunidad Innata , Proteínas de la Membrana/química , Cristalografía por Rayos X , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Fosfatos de Dinucleósidos , Humanos , Interferones , Ligandos , Proteínas de la Membrana/genética , Nucleotidiltransferasas/metabolismo , Prevotella
9.
Nutrients ; 13(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34444960

RESUMEN

Hesperidin (HD) is a common flavanone glycoside isolated from citrus fruits and possesses great potential for cardiovascular protection. Hesperetin (HT) is an aglycone metabolite of HD with high bioavailability. Through the docking simulation, HD and HT have shown their potential to bind to two cellular proteins: transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2), which are required for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results further found that HT and HD suppressed the infection of VeroE6 cells using lentiviral-based pseudo-particles with wild types and variants of SARS-CoV-2 with spike (S) proteins, by blocking the interaction between the S protein and cellular receptor ACE2 and reducing ACE2 and TMPRSS2 expression. In summary, hesperidin is a potential TMPRSS2 inhibitor for the reduction of the SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hesperidina/química , Hesperidina/farmacología , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/virología , Línea Celular Tumoral , Chlorocebus aethiops , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
10.
Viruses ; 13(5)2021 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063247

RESUMEN

In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-CoV-2 infection through the inhibition of the proteases playing important functions in the infection by SARS-CoV-2. FRET assay was applied to investigate the inhibitory effects of SB on the two proteases involved in SARS-CoV-2 infection, Mpro and TMPRSS2. Additionally, to measure the potential effectiveness of SB treatment on infection inhibition, cellular models based on the Calu3 and VeroE6 cells and their TMPRSS2- expressing derivatives were assessed by viral pseudoparticles (Vpp) infection assays. The experimental approaches were conjugated with LC/MS analyses of the aqueous extracts of SB to identify the major constituent compounds, followed by a literature review to determine the potential active components of the inhibitory effects on protease activities. Our results showed that SB extracts inhibited the enzyme activities of Mpro and TMPRSS2. Furthermore, SB extracts effectively inhibited SARS-CoV-2 Vpp infection through a TMPRSS2-dependent mechanism. The aqueous extract analysis identified six major constituent compounds present in SB. Some of them have been known associated with inhibitory activities of TMPRSS2 or Mpro. Thus, SB may effectively prevent SARS-CoV-2 infection and replication through inhibiting Mpro and TMPRSS2 protease activities.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/metabolismo , Extractos Vegetales/farmacología , Serina Endopeptidasas/metabolismo , Animales , COVID-19/metabolismo , Línea Celular , Chlorocebus aethiops , Proteasas 3C de Coronavirus/efectos de los fármacos , Humanos , Pulmón/virología , Pandemias , Péptido Hidrolasas , Peptidil-Dipeptidasa A/metabolismo , Extractos Vegetales/metabolismo , Proteolisis , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Scutellaria , Serina Endopeptidasas/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA