Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 108: 154489, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36270224

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a challenging clinical syndrome that manifests as an acute inflammatory response. Schisandrin B (Sch B), a bioactive lignan from Schisandra genus plants, has been shown to suppress inflammatory responses and oxidative stress. However, the underlying molecular mechanisms have remained elusive. HYPOTHESIS/PURPOSE: This study performed an in-depth investigation of the anti-inflammatory mechanism of Sch B in macrophages and in an animal model of ALI. METHODS: qPCR array was used to probe the differential effects and potential target of Sch B. ALI was induced by intratracheal administration of LPS in experimental mice with or without Sch B treatment. RESULTS: Our studies show that Sch B differentially modulates inflammatory factor induction by LPS in macrophages by directly binding myeloid differentiation response factor-88 (MyD88), an essential adaptor protein in the toll-like receptor-4 (TLR4) pathway. Sch B spares non-MyD88-pathways downstream of TLR4. Such inhibition suppressed key signaling mediators such as TAK1, MAPKs, and NF-κB, and pro-inflammatory factor induction. Pull down assay using biotinylated-Sch B validate the direct interaction between Sch B and MyD88 in macrophages. Treatment of mice with Sch B prior to LPS challenge reduced inflammatory cell infiltration in lungs, induction of MyD88-pathway signaling proteins, and prevented inflammatory cytokine induction. CONCLUSION: In summary, our studies have identified MyD88 as a direct target of Sch B for its anti-inflammatory activity, and suggest that Sch B may have therapeutic value for acute lung injury and other MyD88-dependent inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Lignanos , Factor 88 de Diferenciación Mieloide , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Lignanos/farmacología , Lignanos/uso terapéutico , Lipopolisacáridos , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo
2.
Hypertension ; 79(9): 2028-2041, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862110

RESUMEN

BACKGROUND: Elevated Ang II (angiotensin II) level leads to a range of conditions, including hypertensive kidney disease. Recent evidences indicate that FGFR1 (fibroblast growth factor receptor 1) signaling may be involved in kidney injuries. In this study, we determined whether Ang II alters FGFR1 signaling to mediate renal dysfunction. METHODS: Human archival kidney samples from patients with or without hypertension were examined. Multiple genetic and pharmacological approaches were used to investigate FGFR1-mediated signaling in tubular epithelial NRK-52E cells in response to Ang II stimulation. C57BL/6 mice were infused with Ang II for 28 days to develop hypertensive kidney disease. Mice were treated with either adeno-associated virus expressing FGFR1 shRNA or FGFR1 inhibitor AZD4547. RESULTS: Kidney specimens from subjects with hypertension and mice challenged with Ang II have increased FGFR1 activity in renal epithelial cells. Renal epithelial cells in culture initiate extracellular matrix programming in response to Ang II, through the activation of FGFR1, which is independent of both AT1R (angiotensin II receptor type 1) and AT2R (angiotensin II receptor type 2). The RNA sequencing analysis indicated that disrupting FGFR1 suppresses Ang II-induced fibrogenic responses in epithelial cells. Mechanistically, Ang II-activated FGFR1 leads to STAT3 (signal transducer and activator of transcription 3) activation, which is responsible for fibrogenic factor expression in kidneys. In the mouse model of hypertensive kidney disease, genetic knockdown of FGFR1 or pharmacological inhibition of its activity protected kidneys from dysfunction and fibrosis upon Ang II challenge. CONCLUSIONS: Our studies uncover a novel mechanism causing renal fibrosis in hypertension and indicate FGFR1 as a potential target to preserve renal function and integrity.


Asunto(s)
Hipertensión Renal , Hipertensión , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Células Epiteliales/metabolismo , Fibrosis , Humanos , Hipertensión/metabolismo , Hipertensión Renal/metabolismo , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Nefritis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Angiotensina/metabolismo
4.
Bioorg Chem ; 121: 105672, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202851

RESUMEN

Giving the fact that the disorders of multiple receptor tyrosine kinases (RTKs) are characteristics of various cancers, we assumed that developing novel multi-target drugs might have an advantage in treating the complex cancers. Taking the multi-target c-Met inhibitor Foretinib as the leading compound, we discovered a novel series of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing 1,8-naphthyridine-3-carboxamide moiety with the help of molecular docking. Among them, the most promising compound 33 showed a prominent activity against Hela (IC50 = 0.21 µM), A549 (IC50 = 0.39 µM), and MCF-7 (IC50 = 0.33 µM), which were 3.28-4.82 times more active than that of Foretinib. Additionally, compound 33 dose dependently induced apoptosis by arresting A549 cells at G1 phase. Enzymatic assays and docking analyses were further confirmed that compound 33 was a multi-target inhibitor with the strong potencies against c-Met (IC50 = 11.77 nM), MEK1 (IC50 = 10.71 nM), and Flt-3 (IC50 = 22.36 nM). In the A549 cells mediated xenograft mouse model, compound 33 inhibited the tumor growth (TGI = 64%) without obvious toxicity, establishing compound 33 as a promising candidate for cancer therapy.


Asunto(s)
Amidas/química , Antineoplásicos , Naftiridinas/química , Quinolinas/síntesis química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met , Quinolinas/farmacología , Relación Estructura-Actividad
5.
Biomed Pharmacother ; 143: 112121, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34474346

RESUMEN

Obesity has been recognized as a major risk factor for the development of chronic cardiomyopathy, which is associated with increased cardiac inflammation, fibrosis, and apoptosis. We previously developed an anti-inflammatory compound C66, which prevented inflammatory diabetic complications via targeting JNK. In the present study, we have tested the hypothesis that C66 could prevent obesity-induced cardiomyopathy by suppressing JNK-mediated inflammation. High-fat diet (HFD)-induced obesity mouse model and palmitic acid (PA)-challenged H9c2 cells were used to develop inflammatory cardiomyopathy and evaluate the protective effects of C66. Our data demonstrate a protective effect of C66 against obesity-induced cardiac inflammation, cardiac hypertrophy, fibrosis, and dysfunction, overall providing cardio-protection. C66 administration attenuates HFD-induced myocardial inflammation by inhibiting NF-κB and JNK activation in mouse hearts. In vitro, C66 prevents PA-induced myocardial injury and apoptosis in H9c2 cells, accompanied with inhibition against PA-induced JNK/NF-κB activation and inflammation. The protective effect of C66 is attributed to its potential to inhibit JNK activation, which led to reduced pro-inflammatory cytokine production and reduced apoptosis in cardiomyocytes both in vitro and in vivo. In summary, C66 provides significant protection against obesity-induced cardiac dysfunction, mainly by inhibiting JNK activation and JNK-mediated inflammation. Our data indicate that inhibition of JNK is able to provide significant protection against obesity-induced cardiac dysfunction.


Asunto(s)
Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Compuestos de Bencilideno/farmacología , Cardiomiopatías/prevención & control , Ciclohexanonas/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Miocarditis/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Obesidad/complicaciones , Animales , Cardiomiopatías/enzimología , Cardiomiopatías/etiología , Cardiomiopatías/patología , Línea Celular , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Miocarditis/enzimología , Miocarditis/etiología , Miocarditis/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , FN-kappa B/metabolismo , Ácido Palmítico/toxicidad , Ratas , Transducción de Señal
6.
Biomed Pharmacother ; 141: 111874, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34229251

RESUMEN

Bicyclol has been approved as an anti-inflammatory, hepatoprotective drug in China to treat various forms of hepatitis. However, the role of bicyclol in non-alcoholic fatty liver disease (NAFLD) is unknown. In this study, NAFLD model was established by feeding mice with high fat diet (HFD) for 16 weeks, and bicyclol (25 and 50 mg/kg) were orally administered for the last 4 weeks. Although bicyclol treatment did not change the body weight of mice, bicyclol administration significantly improved HFD-induced dyslipidemia, NAFLD activity score, hepatic apoptosis, systemic and hepatic inflammation, and liver fibrosis in the mice. Moreover, bicyclol treatment significantly inhibited HFD-induced activation of MAPKs and NF-κB signaling pathways that may mediate the inflammatory responses. Further in vitro studies showed that bicyclol pretreatment markedly ameliorated PA-induced inflammatory responses in human hepatocyte HL-7702 cells and mouse peritoneal macrophages through inhibiting MAPKs and NF-κB signaling pathways. These data indicated that bicyclol may have the potency to treat NAFLD by reducing inflammation.


Asunto(s)
Compuestos de Bifenilo/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Compuestos de Bifenilo/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
7.
Aging (Albany NY) ; 13(11): 14892-14909, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34102609

RESUMEN

BACKGROUND: Recent studies have demonstrated a key role of vascular smooth muscle cell (VSMC) dysfunction in atherosclerosis. Cyclin-dependent kinases 9 (CDK9), a potential biomarker of atherosclerosis, was significantly increased in coronary artery disease patient serum and played an important role in inflammatory diseases. This study was to explore the pharmacological role of CDK9 inhibition in attenuating atherosclerosis. METHODS: A small-molecule CDK9 inhibitor, LDC000067, was utilized to treat the high fat diet (HFD)-fed ApoE-/- mice and human VSMCs. RESULTS: The results showed that inflammation and phenotypic switching of VSMCs were observed in HFD-induced atherosclerosis in ApoE-/- mice, which were accompanied with increased CDK9 in the serum and atherosclerotic lesions where it colocalized with VSMCs. LDC000067 treatment significantly suppressed HFD-induced inflammation, proliferation and phenotypic switching of VSMCs, resulting in reduced atherosclerosis in the ApoE-/- mice, while had no effect on plasma lipids. Further in vitro studies confirmed that LDC000067 and siRNA-mediated CDK9 knockdown reversed ox-LDL-induced inflammation and phenotypic switching of VSMCs from a contractile phenotype to a synthetic phenotype via inhibiting NF-κB signaling pathway in human VSMCs. CONCLUSION: These results indicate that inhibition of CDK9 may be a novel therapeutic target for the prevention of atherosclerosis.


Asunto(s)
Aterosclerosis/enzimología , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Inflamación/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/complicaciones , Quinasa 9 Dependiente de la Ciclina/metabolismo , Dieta Alta en Grasa , Humanos , Inflamación/complicaciones , Lipoproteínas LDL , Masculino , Ratones , Miocitos del Músculo Liso/efectos de los fármacos , FN-kappa B/metabolismo , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/metabolismo , Transducción de Señal
8.
J Cell Mol Med ; 21(12): 3776-3786, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28767204

RESUMEN

Obesity is a major and independent risk factor of kidney diseases. The pathogenic mechanisms of obesity-associated renal injury are recognized to at least involve a lipid-rich and pro-inflammatory state of the renal tissues, but specific mechanisms establishing causal relation remain unknown. Saturated fatty acids are elevated in obesity, and known to induce chronic inflammation in kidneys. Myeloid differentiation protein 2 (MD2) is an important protein in lipopolysaccharide-induced innate immunity response and inflammation. We suggested that obesity-associated renal injury is regulated by MD2 thereby driving an inflammatory renal injury. The used three mouse models for in vivo study: MD2 knockout mice (KO) maintained on high fat diet (HFD), wild-type mice on HFD plus L6H21, a specific MD2 inhibitor and KO mice given palmitic acid (PA) by IV injection. The in vitro studies were carried out in cultured renal tubular epithelial cells, mouse mesangial cells and primary macrophages, respectively. The HFD mice presented with increased hyperlipidemia, serum creatinine and proteinuria. Renal tissue from HFD mice had increased fibrosis, inflammatory cytokines, macrophage infiltration, and activation of NF-κB and MAPKs. This HFD-induced renal injury profile was not observed in KO mice or L6H21-treated mice. Mice given PA mimmicked the HFD-induced renal injury profiles, which were prevented by MD2 knockout. The in vitro data further confirmed MD2 mediates PA-induced inflammation. MD2 is causally related with obesity-associated renal inflammatory injury. We believe that MD2 is an attractive target for future therapeutic strategies in obesity-associated kidney diseases.


Asunto(s)
Antiinflamatorios/farmacología , Chalconas/farmacología , Dieta Alta en Grasa/efectos adversos , Hiperlipidemias/prevención & control , Antígeno 96 de los Linfocitos/genética , Nefritis/prevención & control , Obesidad/tratamiento farmacológico , Animales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica , Hiperlipidemias/etiología , Hiperlipidemias/genética , Hiperlipidemias/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Antígeno 96 de los Linfocitos/antagonistas & inhibidores , Antígeno 96 de los Linfocitos/deficiencia , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Nefritis/etiología , Nefritis/genética , Nefritis/patología , Obesidad/etiología , Obesidad/genética , Obesidad/patología , Cultivo Primario de Células , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA