Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(5): 3056-3064, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35133807

RESUMEN

Harmful algal blooms formed by fast-growing, ephemeral macroalgae have expanded worldwide, yet there is limited knowledge of their potential ecological consequences. Here, we select intense green tides formed by Ulva prolifera in the Yellow Sea, China, to examine the ecological consequences of these blooms. Using 28-isofucosterol in the surface sediment as a biomarker of green algae, we identified the settlement region of massive floating green algae in the area southeast of the Shandong Peninsula in the southern Yellow Sea. The responses of the phytoplankton assemblage from the deep chlorophyll-a maximum layer were then resolved using high-throughput sequencing. We found striking changes in the phytoplankton community in the settlement region after an intensive green tide in 2016, characterized by a remarkable increase in the abundance of the pelagophyte Aureococcus anophagefferens, the causative species of ecosystem disruptive brown tides. Our study strongly suggests that the occurrence of massive macroalgal blooms may promote blooms of specific groups of microalgae through alteration of the marine environment.


Asunto(s)
Estramenopilos , Ulva , Proliferación Celular , China , Ecosistema , Eutrofización , Floraciones de Algas Nocivas , Fitoplancton/fisiología , Estramenopilos/química , Estramenopilos/fisiología , Ulva/fisiología
2.
Sci Total Environ ; 815: 152935, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007597

RESUMEN

The North Yellow Sea (NYS) is a productive marginal sea of the western North Pacific. In summer and autumn, CaCO3 saturation states beneath the seasonal thermocline in the NYS have frequently fallen below critical levels, indicating that marine calcifying organisms are under threat. To explore the long-term evolution of the acidification of the NYS, we reconstructed seasonal variations in subsurface aragonite saturation state (Ωarag) and pH during 1976-2017, using wintertime and summertime temperature, salinity, dissolved oxygen and pH data mainly from a quality-controlled oceanographic database. Over the past 40 years, the wintertime warming rate in the NYS was twice the rate of global ocean surface warming. Warming-induced decrease in CO2 solubility canceled out a part of the wintertime Ωarag decrease caused by atmospheric CO2 increase, and also had minor effect on pH changes in winter. Although the NYS is a semi-enclosed marginal sea, its interannual variations of wintertime temperature, salinity, pH and Ωarag were correlated to Pacific Decadal Oscillation with a lag of 2-3 years. Due to the eutrophication-induced enhancement of net community respiration beneath the seasonal thermocline, long-term declines of bottom-water Ωarag and pH in summer were substantially faster than the declines of assumed air-equilibrated Ωarag and pH in spring. Over the past 40 years, the amplitudes of seasonal variations of bottom-water Ωarag and pH from spring to summer/autumn have increased by 4-7 times. This amplification has pushed the NYS towards the critical threshold of net community CaCO3 dissolution at a pace faster than that forecast under scenarios of atmospheric CO2 increase. In summary, our results provide insights into the combined effects of ocean warming, eutrophication, atmospheric CO2 rise and climate variability on coastal hydrochemistry, explaining how the environmental stresses on local marine calcifying organisms and the benthic ecosystem increased over the past 40 years.


Asunto(s)
Ecosistema , Agua de Mar , China , Eutrofización , Concentración de Iones de Hidrógeno
3.
Sci Rep ; 11(1): 10137, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980930

RESUMEN

In the past decade (2010-2019), the annual maximum typhoon storm surge (AMTSS) accounted for 46.6% of the total direct economic loss caused by marine disasters in Chinese mainland, but its prediction in advance is challenging. By analyzing records of 23 tide-gauge stations, we found that the AMTSSs in Shanghai, Zhejiang and Fujian show significant positive correlations with the El Niño-Southern Oscillation (ENSO). For the 1987-2016 period, the maximum correlation is achieved at Pingtan station, where correlation coefficient between the AMTSS and Niño-3.4 is 0.55. The AMTSS occurring in El Niño years are stronger than those in non-El Niño years by 9-35 cm in these areas. Further analysis suggests that a developing El Niño can greatly modulate the behaviors of Northwest Pacific typhoons. Strong typhoons tend to make landfall in southeast China with stronger intensities and northward shifted landfall positions. This study indicates that the modulation effect by ENSO may provide potential predictability for the AMTSS, which is useful for the early alert and reduction of storm surge damages.

4.
Sci Rep ; 8(1): 10106, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973624

RESUMEN

Oceanic mesoscale eddies are common, especially in areas where zonal currents with meridional shear exists. The nonlinear effects complicate the analysis of mesoscale eddy dynamics. This study proposes a solitary (eddy) solution based on an asymptotic expansion of the nonlinear potential vorticity equation with a constant meridional shear of zonal current. This solution reveals several important consequences. For example, cyclonic (anticyclonic) eddies can be generated by the negative (positive) shear of the zonal current. Furthermore, the meridional structure of an eddy is asymmetrical, and the center of a cyclonic (anticyclonic) eddy tilts poleward (equatorward). Eddy width is inversely proportional to shear intensity. Eddy phase speed is proportional to shear intensity and the wave amplitude, and their spatial distribution show band-like pattern as they propagate westward. This nonlinear solitary solution is an extension of classical linear Rossby theory. Moreover, these findings could be applied to other areas with similar zonal current shear.

5.
PLoS One ; 10(9): e0137863, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26407324

RESUMEN

Typhoons can cause strong disturbance, mixing, and upwelling in the upper layer of the oceans. Rich nutrients from the subsurface layer can be brought to the euphotic layer, which will induce the phytoplankton to breed and grow rapidly. In this paper, we investigate the impact of an intense and fast moving tropical storm, Typhoon Matsa, on phytoplankton chlorophyll-a (Chl-a) concentration off East China. By using satellite remote sensing data, we analyze the changes of Chl-a concentration, Sea Surface Temperature (SST) and wind speed in the pre- and post-typhoon periods. We also give a preliminary discussion on the different responses of the Chl-a concentration between nearshore and offshore waters. In nearshore/coastal regions where nutrients are generally rich, the Chl-a maximum occurs usually at the surface or at the layer close to the surface. And, in offshore tropical oligotrophic oceans, the subsurface maxima of Chl-a exist usually in the stratified water column. In an offshore area east of Taiwan, the Chl-a concentration rose gradually in about two weeks after the typhoon. However, in a coastal area north of Taiwan high Chl-a concentration decreased sharply before landfall, rebounded quickly to some degree after landfall, and restored gradually to the pre-typhoon level in about two weeks. The Chl-a concentration presented a negative correlation with the wind speed in the nearshore area during the typhoon, which is opposite to the response in the offshore waters. The phenomena may be attributable to onshore advection of low Chl-a water, coastal downwelling and intensified mixing, which together bring pre-typhoon surface Chl-a downward in the coastal area. In the offshore area, the typhoon may trigger increase of Chl-a concentration through uptake of nutrients by typhoon-induced upwelling and entrainment mixing.


Asunto(s)
Clorofila/metabolismo , Tormentas Ciclónicas , Océanos y Mares , Fitoplancton/crecimiento & desarrollo , China , Clorofila A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA