Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leukemia ; 37(6): 1204-1215, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095208

RESUMEN

Mismatch repair (MMR) deficiency has been linked to thiopurine resistance and hypermutation in relapsed acute lymphoblastic leukemia (ALL). However, the repair mechanism of thiopurine-induced DNA damage in the absence of MMR remains unclear. Here, we provide evidence that DNA polymerase ß (POLB) of base excision repair (BER) pathway plays a critical role in the survival and thiopurine resistance of MMR-deficient ALL cells. In these aggressive resistant ALL cells, POLB depletion and its inhibitor oleanolic acid (OA) treatment result in synthetic lethality with MMR deficiency through increased cellular apurinic/apyrimidinic (AP) sites, DNA strand breaks and apoptosis. POLB depletion increases thiopurine sensitivities of resistant cells, and OA synergizes with thiopurine to kill these cells in ALL cell lines, patient-derived xenograft (PDX) cells and xenograft mouse models. Our findings suggest BER and POLB's roles in the process of repairing thiopurine-induced DNA damage in MMR-deficient ALL cells, and implicate their potentials as therapeutic targets against aggressive ALL progression.


Asunto(s)
ADN Polimerasa beta , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Humanos , Ratones , Daño del ADN , ADN Polimerasa beta/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Mutaciones Letales Sintéticas , Reparación de la Incompatibilidad de ADN/genética
2.
EMBO J ; 41(11): e109324, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35471583

RESUMEN

In activated B cells, activation-induced cytidine deaminase (AID) generates programmed DNA lesions required for antibody class switch recombination (CSR), which may also threaten genome integrity. AID dynamically shuttles between cytoplasm and nucleus, and the majority stays in the cytoplasm due to active nuclear export mediated by its C-terminal peptide. In immunodeficient-patient cells expressing mutant AID lacking its C-terminus, a catalytically active AID-delC protein accumulates in the nucleus but nevertheless fails to support CSR. To resolve this apparent paradox, we dissected the function of AID-delC proteins in the CSR process and found that they cannot efficiently target antibody genes. We demonstrate that AID-delC proteins form condensates both in vivo and in vitro, dependent on its N-terminus and on a surface arginine-rich patch. Co-expression of AID-delC and wild-type AID leads to an unbalanced nuclear AID-delC/AID ratio, with AID-delC proteins able to trap wild-type AID in condensates, resulting in a dominant-negative phenotype that could contribute to immunodeficiency. The co-condensation model of mutant and wild-type proteins could be an alternative explanation for the dominant-negative effect in genetic disorders.


Asunto(s)
Citidina Desaminasa , Cambio de Clase de Inmunoglobulina , Linfocitos B , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina/genética
3.
Nat Commun ; 11(1): 2812, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499490

RESUMEN

Activation-induced cytidine deaminase (AID) initiates both antibody class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. DNA double-strand break response (DSBR) factors promote rearrangement in CSR, while translesion synthesis (TLS) polymerases generate mutations in SHM. REV7, a component of TLS polymerase zeta, is also a downstream effector of 53BP1-RIF1 DSBR pathway. Here, we study the multi-functions of REV7 and find that REV7 is required for the B cell survival upon AID-deamination, which is independent of its roles in DSBR, G2/M transition or REV1-mediated TLS. The cell death in REV7-deficient activated B cells can be fully rescued by AID-deficiency in vivo. We further identify that REV7-depedent TLS across UNG-processed apurinic/apyrimidinic sites is required for cell survival upon AID/APOBEC deamination. This study dissects the multiple roles of Rev7 in antibody diversification, and discovers that TLS is not only required for sequence diversification but also B cell survival upon AID-initiated lesions.


Asunto(s)
Linfocitos B/metabolismo , Citidina Desaminasa/metabolismo , Roturas del ADN de Doble Cadena , Activación de Linfocitos , Proteínas Mad2/metabolismo , Mutación , Animales , Linfocitos B/inmunología , Supervivencia Celular , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Genotipo , Cambio de Clase de Inmunoglobulina , Masculino , Ratones , Recombinación Genética , Hipermutación Somática de Inmunoglobulina , Uracil-ADN Glicosidasa/genética
4.
Cell Res ; 30(9): 732-744, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32355287

RESUMEN

Programmed DNA recombination in mammalian cells occurs predominantly in a directional manner. While random DNA breaks are typically repaired both by deletion and by inversion at approximately equal proportions, V(D)J and class switch recombination (CSR) of immunoglobulin heavy chain gene overwhelmingly delete intervening sequences to yield productive rearrangement. What factors channel chromatin breaks to deletional CSR in lymphocytes is unknown. Integrating CRISPR knockout and chemical perturbation screening we here identify the Snf2-family helicase-like ERCC6L2 as one such factor. We show that ERCC6L2 promotes double-strand break end-joining and facilitates optimal CSR in mice. At the cellular levels, ERCC6L2 rapidly engages in DNA repair through its C-terminal domains. Mechanistically, ERCC6L2 interacts with other end-joining factors and plays a functionally redundant role with the XLF end-joining factor in V(D)J recombination. Strikingly, ERCC6L2 controls orientation-specific joining of broken ends during CSR, which relies on its helicase activity. Thus, ERCC6L2 facilitates programmed recombination through directional repair of distant breaks.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Mamíferos/genética , Recombinación V(D)J/genética , Animales , Sistemas CRISPR-Cas/genética , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G/metabolismo , Ratones Noqueados , Mutación/genética , Unión Proteica
5.
Microbiol Res ; 192: 21-29, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27664720

RESUMEN

Pseudomonas aeruginosa ATCC 27853 and Pseudomonas sp. 593 use the phosphatidylcholine synthase pathway (Pcs-pathway) for the biosynthesis of phosphatidylcholine (PC). Both bacterial strains contain the phoA and lapA genes encoding alkaline phosphatases (ALP) and display strong ALP activities. The PhoA and LapA enzymes are thought to be independently secreted via the Xcp and Hxc type II secretion system (T2SS) subtypes, in which the Hxc system may act as a complementary mechanism when the Xcp pathway becomes limiting. Inactivation of the pcs gene in both bacteria abolished PC synthesis and resulted in approximately 50% less ALP activity in the cell-free culture. Analysis by western blotting showed that LapA protein content in the wild type and the pcs- mutant was unchanged in the cytoplasmic, periplasmic or extracellular protein fractions. In contrast, the PhoA protein in the pcs- mutant was less prevalent among extracellular proteins but was more abundant in the periplasmic protein fraction compared to the wild type. Semi- quantitative reverse transcriptase PCR showed that phoA, lapA and 12 xcp genes were equally expressed at the transcriptional level in both the wild types and the pcs- mutants. Our results demonstrate that the absence of PC in bacterial membrane phospholipids does not interfere with the transcription of the phoA and lapA genes but primarily affects the export of PhoA from the cytoplasm to the extracellular environment via the Xcp T2SS.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Fosfatidilcolinas/metabolismo , Pseudomonas/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Transporte de Proteínas , Transcripción Genética , Sistemas de Secreción Tipo II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...