Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Pharmacol ; 63(4): 466-472, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36433654

RESUMEN

This study was performed to detect the expression of ceruloplasmin in the peripheral blood of patients with drug-resistant epilepsy and explore the mechanisms of iron metabolism disorder in drug-resistant epilepsy. Peripheral blood was collected from 32 patients with drug-resistant epilepsy, labeled the drug-resistant group; 30 patients who were drug responsive, labeled the drug-responsive group; and 34 healthy people, named the normal group.The expression levels of ceruloplasmin mRNA and ceruloplasmin protein in the peripheral blood of the 3 groups were detected using real-time fluorescence-based quantitative polymerase chain reaction and Western blot. The differences in the expression of ceruloplasmin mRNA of different seizure frequencies and types, electroencephalogram abnormal discharges, and different medication methods were analyzed and compared. The relative expression of ceruloplasmin mRNA and ceruloplasmin protein in the drug-resistant epilepsy group was significantly higher than that in the drug-responsive group (P = .002 and .010, respectively) and higher in the drug-responsive group compared with the normal group (P = .014 and .005, respectively). The relative expression of ceruloplasmin mRNA in patients with epilepsy using different medication methods was statistically significant (P = .001). Patients who received a combination of 2 or 3 drugs exhibited a higher expression than those treated with single-drug treatment, whereas those who received a combination of 3 drugs had a higher expression than those with 2 drugs (P = .013, .001, and .011, respectively). There was no significant difference in the relative expression of Cp mRNA in patients with epilepsy with different seizure frequencies and types and abnormal electroencephalogram discharges (all P > .05). The increased expression of ceruloplasmin in the peripheral blood of patients with drug-resistant epilepsy was closely related to the different medication methods, but no obvious correlation with epileptic seizure frequencies or types and abnormal electroencephalogram discharges was identified. The increased expression of ceruloplasmin enhanced iron oxidative damage and may be the potential mechanism of drug-resistant epilepsy and may be one of the drug resistance indicators for combination drugs when treating drug-resistant epilepsy.


Asunto(s)
Epilepsia Refractaria , Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/tratamiento farmacológico , Ceruloplasmina/análisis , Ceruloplasmina/genética , Regulación de la Expresión Génica , Estrés Oxidativo , Convulsiones , Gravedad del Paciente , Electroencefalografía
2.
Ecotoxicol Environ Saf ; 244: 114026, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055041

RESUMEN

Effective treatment of water pollution is an economic and social requirement globally. Humic acid (HA) is a popular mitigator for such waters. However, the combined effect of HA and restorative plants on cadmium (Cd) remediation is not well understood. Therefore, we experimented on Cd remediation using HA along with vetiver grass and HA-vetiver grass. We observed that vetiver grass effectively removed Cd at 15~30 mg/L. The accumulation capacity of the root was significantly higher than the shoots (P < 0.05), and Cd distribution followed the trend: cell wall > organelle > soluble substance (F1 > F2 > F3). The plant's accumulation capacity against 25 mg/L Cd was higher than for other treatments. The root accumulation capacity was much higher (702.3 mg/L) than those without added HA. However, upon adding 200 and 250 mg/L HA, the phytoremediation of Cd in the root and shoot significantly reduced (P < 0.05). Conversely, HA improved the Cd removal efficiency of the plants, notably at a lower HA concentration (150 mg/L). In addition, HA (especially at 150 mg/L) influences Cd distribution in vetiver cells (P < 0.05) and can significantly increase the proportion of Cd in the root cytoplasm. Consequently, a low HA concentration can significantly improve Cd accumulation in the vetiver, shorten the metal's bioremediation cycle, and improve the biological absorption efficiency.


Asunto(s)
Chrysopogon , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/metabolismo , Chrysopogon/metabolismo , Sustancias Húmicas , Plantas/metabolismo , Contaminantes del Suelo/análisis , Contaminación del Agua
3.
Chemistry ; 24(64): 17148-17154, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30125400

RESUMEN

Nanoscale metal-organic frameworks (NMOFs) have proven to be a class of promising drug carriers as a result of their high porosity, crystalline nature with definite structure information, and potential for further functionality. However, MOF-based drug carriers with active tumor-targeting function have not been extensively researched until now. Here we show a strategy for constructing active tumor-targeted NMOF drug carriers by anchoring functional folic acid (FA) molecules onto the metal clusters of NMOFs. Two zirconium-based MOFs, MOF-808 and NH2 -UiO-66, were chosen as models to reduce to the nanoscale for application as drug carriers, and then the terminal carboxylates of FA molecules were coordinated to Zr6 clusters on the surfaces of the nanoparticles by substitution of the original formate or terminal -OH ligands. The successful modification with FA was confirmed by solid-state 13 C MAS NMR and UV/Vis spectroscopy and other characterization methods. Drug loading and controlled release behavior at different pH were determined by utilizing the anticancer drug 5-fluorouracil (5-FU) as the model drug. Confocal laser scanning microscopy measurements further demonstrated that 5-FU-loaded FA-NMOFs have excellent targeting ability through the efficient cellular uptake of FA-NMOFs. This work opens up a new avenue to the construction of active tumor-targeted NMOF-based drug carriers with potential for cancer therapies.


Asunto(s)
Antineoplásicos/química , Portadores de Fármacos/química , Estructuras Metalorgánicas/química , Circonio/química , Animales , Antineoplásicos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Fluorouracilo/química , Fluorouracilo/farmacología , Ácido Fólico/química , Células HeLa , Humanos , Ratones , Microscopía Confocal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA