Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 468: 133836, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394902

RESUMEN

Global aflatoxin B1 (AFB1) contamination is inevitable, and it can significantly damage testicular development. However, the current mechanism is confusing. Here, by integrating the transcriptome, microbiome, and serum metabolome, we comprehensively explain the impact of AFB1 on testis from the gut-metabolism-testis axis. Transcriptome analysis suggested that AFB1 exposure directly causes abnormalities in testicular inflammation-related signalling, such as tumor necrosis factor (TNF) pathway, and proliferation-related signalling pathways, such as phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) pathway, which was verified by immunofluorescence. On the other hand, we found that upregulated inflammatory factors in the intestine after AFB1 exposure were associated with intestinal microbial dysbiosis, especially the enrichment of Bacilli, and enrichment analysis showed that this may be related to NLR family pyrin domain containing 3 (NLRP3)-mediated NOD-like receptor signalling. Also, AFB1 exposure caused blood metabolic disturbances, manifested as decreased hormone levels and increased oxidative stress. Significantly, B. licheniformis has remarkable AFB1 degradation efficiency (> 90%). B. licheniformis treatment is effective in attenuating gut-testis axis damage caused by AFB1 exposure through the above-mentioned signalling pathways. In conclusion, our findings indicate that AFB1 exposure disrupts testicular development through the gut-metabolism-testis axis, and B. licheniformis can effectively degrade AFB1.


Asunto(s)
Bacillus licheniformis , Testículo , Masculino , Humanos , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Metaboloma
2.
Biomed Pharmacother ; 165: 115087, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392659

RESUMEN

All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , Ácidos Nucleicos , Exosomas/metabolismo , Distribución Tisular , Sistemas de Liberación de Medicamentos/métodos , MicroARNs/metabolismo , Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
3.
J Microencapsul ; 23(6): 622-31, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17118878

RESUMEN

Microcapsules for sustained release of poorly soluble isosorbide dinitrate (ISDN) were prepared based on ethylcellulose (EC) and/or blended with appropriate amounts of relatively hydrophilic hydroxypropyl cellulose (HPC) as matrix materials using the oil-in-oil emulsion evaporation method. The microspheres studied had three-mode sizes (100-150, 250-300 and 400-450 microm) and four polymer compositions (1, 0.833, 0.67 and 0.5 weight fraction EC). The microspheres were observed to contain essentially no drug crystalline domain and were of a porous morphology. The cumulative amounts of ISDN releasing from the microspheres as functions of mode fractions size and polymer compositions were measured in vitro. It was observed that the microspheres' size influenced the release behaviour of drug more obviously than the polymer composition. The smaller size and the higher hydrophilic HPC content show the faster release rate of drug and the smaller amount of drug residue. The kinetics of drug release depends on the size and polymer composition. The microspheres with 100-150 microm, of all polymer compositions, present one-stage diffusion kinetic with a lag period for drug release. On the other hand, the microspheres with the other two sizes exhibit two-stage diffusion kinetic with a lag period. According to the kinetic model, the microspheres obtained are surmised to have a core-shell like drug concentration distribution and/or a core-shell morphology.


Asunto(s)
Dinitrato de Isosorbide/administración & dosificación , Vasodilatadores/administración & dosificación , Celulosa/análogos & derivados , Celulosa/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Difusión , Composición de Medicamentos , Excipientes , Derivados de la Hipromelosa , Dinitrato de Isosorbide/química , Cinética , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Microscopía Electrónica de Rastreo , Microesferas , Tamaño de la Partícula , Porosidad , Solubilidad , Espectrofotometría Ultravioleta , Vasodilatadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA