Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Sci Data ; 11(1): 460, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710725

Blood orange (BO) is a rare red-fleshed sweet orange (SWO) with a high anthocyanin content and is associated with numerous health-related benefits. Here, we reported a high-quality chromosome-scale genome assembly for Neixiu (NX) BO, reaching 336.63 Mb in length with contig and scaffold N50 values of 30.6 Mb. Furthermore, 96% of the assembled sequences were successfully anchored to 9 pseudo-chromosomes. The genome assembly also revealed the presence of 37.87% transposon elements and 7.64% tandem repeats, and the annotation of 30,395 protein-coding genes. A high level of genome synteny was observed between BO and SWO, further supporting their genetic similarity. The speciation event that gave rise to the Citrus species predated the duplication event found within them. The genome-wide variation between NX and SWO was also compared. This first high-quality BO genome will serve as a fundamental basis for future studies on functional genomics and genome evolution.


Citrus sinensis , Genome, Plant , Citrus sinensis/genetics , Chromosomes, Plant , DNA Transposable Elements , Synteny
3.
Plant Physiol ; 194(2): 867-883, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-37935634

MYB family transcription factors (TFs) play essential roles in various biological processes, yet their involvement in regulating fruit ripening and fruit size in citrus remains poorly understood. In this study, we have established that the R2R3-MYB TF, CsMYB77, exerts a negative regulatory influence on fruit ripening in both citrus and tomato (Solanum lycopersicum), while also playing a role in modulating fruit size in citrus. The overexpression of CsMYB77 in tomato and Hongkong kumquat (Fortunella hindsii) led to notably delayed fruit ripening phenotypes. Moreover, the fruit size of Hongkong kumquat transgenic lines was largely reduced. Based on DNA affinity purification sequencing and verified interaction assays, SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA4 (SINAT4) and PIN-FORMED PROTEIN5 (PIN5) were identified as downstream target genes of CsMYB77. CsMYB77 inhibited the expression of SINAT4 to modulate abscisic acid (ABA) signaling, which delayed fruit ripening in transgenic tomato and Hongkong kumquat lines. The expression of PIN5 was activated by CsMYB77, which promoted free indole-3-acetic acid decline and modulated auxin signaling in the fruits of transgenic Hongkong kumquat lines. Taken together, our findings revealed a fruit development and ripening regulation module (MYB77-SINAT4/PIN5-ABA/auxin) in citrus, which enriches the understanding of the molecular regulatory network underlying fruit ripening and size.


Citrus , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Fruit/metabolism , Citrus/genetics , Citrus/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Front Microbiol ; 14: 1285229, 2023.
Article En | MEDLINE | ID: mdl-38125563

Microcystis possesses the capacity to form colonies and blooms in lakes and reservoirs worldwide, causing significant ecological challenges in aquatic ecosystems. However, little is known about the determining factors of physico-chemical surface properties that govern the competitive advantage of Microcystis. Here, The physico-chemical surface properties of Microcystis wesenbergii and Microcystis aeruginosa, including specific surface area (SSA), hydrophobicity, zeta potential, and functional groups were investigated. Additionally, the extracellular polysaccharide (EPS) were analyzed. Laboratory-cultured Microcystis exhibited hydrophilic, a negative zeta potential and negatively charged. Furthermore, no significant relationship was shown between these properties and the cultivation stage. Microcystis wesenbergii exhibited low free energy of cohesion, high surface free energy, high growth rate, and high EPS content during the logarithmic phase. On the other hand, M. aeruginosa displayed lower free energy of cohesion, high surface free energy, high EPS content, and high growth rate during the stationary phase. These characteristics contribute to their respective competitive advantage. Furthermore, the relationship between EPS and surface properties was investigated. The polysaccharide component of EPS primarily influenced the SSA and total surface energy of Microcystis. Likewise, the protein component of EPS influenced hydrophobicity and surface tension. The polysaccharide composition, including glucuronic acid, xylose, and fructose, mainly influenced surface properties. Additionally, hydrophilic groups such as O-H and P-O-P played a crucial role in determining hydrophobicity in Microcystis. This study elucidates that EPS influenced the SSA, hydrophobicity, and surface free energy of Microcystis cells, which in turn impact the formation of Microcystis blooms and the collection.

5.
Front Microbiol ; 14: 1284864, 2023.
Article En | MEDLINE | ID: mdl-38029206

Introduction: Biodiversity maintenance and its underlying mechanisms are central issues of ecology. However, predicting the composition turnovers of microbial communities at multiple spatial scales remains greatly challenging because they are obscured by the inconsistent impacts of climatic and local edaphic conditions on the assembly process. Methods: Based on the Illumina MeSeq 16S/18S rRNA sequencing technology, we investigated soil bacterial and eukaryotic communities in biocrusts with different successional levels at a subcontinental scale of Northern China. Results: Results showed that irrespective of spatial scale, bacterial α diversity increased but eukaryotic diversity decreased with the primary succession, whereas both ß diversities decreased at the subcontinental scale compared with smaller scales, indicating that the biogeographic pattern of soil microorganisms was balanced by successional convergence and distance decay effect. We found that the convergence of bacterial and eukaryotic communities was attributed to the turnovers of generalist and specialist species, respectively. In this process, edaphic and climatic factors showed unique roles in the changes of diversity at local/subcontinental scales. Moreover, the taxonomic diversity tended to be more susceptible to climatic and edaphic conditions, while biotic factors (photosynthesis and pigments) were more important to phylogenetic diversity. Conclusion: Taken together, our study provided comprehensive insights into understanding the pattern of microbial diversity at multiple spatial scales of drylands.

6.
Plants (Basel) ; 12(19)2023 Oct 07.
Article En | MEDLINE | ID: mdl-37836235

Studying how freshwater cells modify metabolism and membrane lipids in response to salt stress is important for understanding how freshwater organisms adapt to salt stress and investigating new osmoregulatory ways. Physiological, biochemical, metabolic, and proteomic analyses were applied in a novel saline-alkali-tolerant microalga Monoraphidium dybowskii LB50 under different NaCl concentrations. Cells adopt a variety of strategies to adapt to salt stress, including increasing ion transport and osmolytes, regulating cell cycle and life history, and accumulating triacylglycerol (TAG). A large number of metabolic activities point to TAG accumulation. With increasing NaCl concentration, the C resource for TAG accumulation went from photosynthetically fixed C and a small amount of lipid remodeling to macromolecule degradation and a mass of lipid remodeling, respectively. The energy for TAG accumulation went from linear electron transfer and oxidative phosphate pentose pathway to cyclic electron flow, substrate phosphorylation, oxidation phosphorylation, and FA oxidation. Additionally, digalacturonic acid and amino acids of the N-acetyl group, which usually were the osmotica for marine organisms, were important for M. dybowskii LB50. Freshwater organisms evolved many biological ways to adapt to salt stress. This insight enriches our understanding of the adaptation mechanisms underlying abiotic stress.

7.
BMC Genomics ; 24(1): 571, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37752438

BACKGROUND: Malvaceae is an economically important plant family of 4,225 species in nine subfamilies. Phylogenetic relationships among the nine subfamilies have always been controversial, especially for Brownlowioideae, whose phylogenetic position remains largely unknown due to the lack of samples in previous analysis datasets. To greatly clarify the phylogenetic relationship of Malvaceae, we newly sequenced and assembled the plastome of Diplodiscus trichospermus taxonomically located in Brownlowioideae, and downloaded the allied genomes from public database to build a dataset covering all subfamily members of Malvaceae. RESULTS: The annotation results showed that the plastome of Diplodiscus trichospermus has a typical quadripartite structure, comprising 112 unique genes, namely 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The total length was 158,570 bp with 37.2% GC content. Based on the maximum likelihood method and Bayesian inference, a robust phylogenetic backbone of Malvaceae was reconstructed. The topology showed that Malvaceae was divided distinctly into two major branches which were previously recognized as Byttneriina and Malvadendrina. In the Malvadendrina clade, Malvoideae and Bombacoideae formed, as always, a close sister clade named as Malvatheca. Subfamily Helicteroideae occupied the most basal position and was followed by Sterculioideae which was sister to the alliance of Malvatheca, Brownlowioideae, Dombeyoideae, and Tilioideae. Brownlowioideae together with the clade comprising Dombeyoideae and Tilioideae formed a sister clade to Malvatheca. In addition, one specific conservation SSR and three specific palindrome sequences were observed in Brownlowioideae. CONCLUSIONS: In this study, the phylogenetic framework of subfamilies in Malvaceae has been resolved clearly based on plastomes, which may contribute to a better understanding of the classification and plastome evolution for Malvaceae.


Genome, Chloroplast , Malvaceae , Phylogeny , Malvaceae/genetics , Bayes Theorem , Base Sequence
8.
Biosensors (Basel) ; 13(6)2023 Jun 14.
Article En | MEDLINE | ID: mdl-37367018

Rapid and efficient detection of mycotoxins is of great significance in the field of food safety. In this review, several traditional and commercial detection methods are introduced, such as high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), enzyme-linked immunosorbent assay (ELISA), test strips, etc. Electrochemiluminescence (ECL) biosensors have the advantages of high sensitivity and specificity. The use of ECL biosensors for mycotoxins detection has attracted great attention. According to the recognition mechanisms, ECL biosensors are mainly divided into antibody-based, aptamer-based, and molecular imprinting techniques. In this review, we focus on the recent effects towards the designation of diverse ECL biosensors in mycotoxins assay, mainly including their amplification strategies and working mechanism.


Biosensing Techniques , Mycotoxins , Mycotoxins/analysis , Chromatography, Liquid/methods , Biosensing Techniques/methods , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay/methods , Luminescent Measurements/methods
9.
Front Plant Sci ; 14: 1169220, 2023.
Article En | MEDLINE | ID: mdl-37360739

Introduction: Blood orange (Citrus sinensis L.) is a valuable source of nutrition because it is enriched in anthocyanins and has high organoleptic properties. Grafting is commonly used in citriculture and has crucial effects on various phenotypes of the blood orange, including its coloration, phenology, and biotic and abiotic resistance. Still, the underlying genetics and regulatory mechanisms are largely unexplored. Methods: In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at eight developmental stages of the lido blood orange cultivar (Citrus sinensis L. Osbeck cv. Lido) grafted onto two rootstocks. Results and discussion: The Trifoliate orange rootstock provided the best fruit quality and flesh color for Lido blood orange. Comparative metabolomics suggested significant differences in accumulation patterns of metabolites and we identified 295 differentially accumulated metabolites. The major contributors were flavonoids, phenolic acids, lignans and coumarins, and terpenoids. Moreover, transcriptome profiling resulted in the identification of 4179 differentially expressed genes (DEGs), and 54 DEGs were associated with flavonoids and anthocyanins. Weighted gene co-expression network analysis identified major genes associated to 16 anthocyanins. Furthermore, seven transcription factors (C2H2, GANT, MYB-related, AP2/ERF, NAC, bZIP, and MYB) and five genes associated with anthocyanin synthesis pathway (CHS, F3H, UFGT, and ANS) were identified as key modulators of the anthocyanin content in lido blood orange. Overall, our results revealed the impact of rootstock on the global transcriptome and metabolome in relation to fruit quality in lido blood orange. The identified key genes and metabolites can be further utilized for the quality improvement of blood orange varieties.

10.
Materials (Basel) ; 16(9)2023 May 04.
Article En | MEDLINE | ID: mdl-37176413

CO2, as a cheap and abundant renewable C1 resource, can be used to synthesize high value-added chemicals. In this paper, a series of bifunctional metallic niobium complexes were synthesized and their structures were characterized by IR, NMR and elemental analysis. All of these complexes have been proved to be efficient catalysts for the coupling reaction of CO2 and epoxides to obtain cyclic carbonates under solvent- and co-catalyst-free conditions. By using CO2 and propylene oxide as a model reaction, the optimal reaction conditions were systematically screened as: 100 °C, 1 MPa, 2 h, ratio of catalyst to alkylene oxide 1:100. Under the optimal reaction conditions, the bifunctional niobium catalysts can efficiently catalyze the coupling reaction with high yield and excellent selectivity (maximum yield of >99% at high pressure and 96.8% at atmospheric pressure). Moreover, this series of catalysts can also catalyze the coupling reaction at atmospheric pressure and most of them showed high conversion of epoxide. The catalysts have good substrate suitability and are also applicable to a variety of epoxides including diepoxides and good catalytic performances were achieved for producing the corresponding cyclic carbonates in most cases. Furthermore, the catalysts can be easily recovered by simple filtration and reused for at least five times without obvious loss of catalytic activity and selectivity. Kinetic studies were carried out preliminarily for the bifunctional niobium complexes with different halogen ions (3a(Cl-), 3b(Br-), 3c(I-)) and the formation activation energies (Ea) of cyclic carbonates were obtained. The order of apparent activation energy Ea is 3a (96.2 kJ/mol) > 3b (68.2 kJ/mol) > 3c (37.4 kJ/mol). Finally, a possible reaction mechanism is proposed.

11.
Plant J ; 115(3): 642-661, 2023 08.
Article En | MEDLINE | ID: mdl-37077034

Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.


Citrus , Citrus/metabolism , Laser Capture Microdissection , Transcriptome , Seeds/metabolism , Fruit/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks
12.
Front Plant Sci ; 14: 1136439, 2023.
Article En | MEDLINE | ID: mdl-36968356

Introduction: The change in rhizosphere soil bacterial community and root system under new water-saving device is not clear. Methods: A completely randomized experimental design was used to explore the effects of different micropore group spacing (L1: 30 cm micropore group spacing, L2: 50 cm micropore group spacing) and capillary arrangement density (C1: one pipe for one row, C2: one pipe for two rows, C3: one pipe for three rows) on tomato rhizosphere soil bacteria community, roots and tomato yield under MSPF. The bacteria in tomato rhizosphere soil were sequenced by 16S rRNA gene amplicon metagenomic sequencing technology, the interaction of bacterial community, root system and yield in tomato rhizosphere soil was quantitatively described based on regression analysis. Results: Results showed that L1 was not only beneficial to the development of tomato root morphology, but also promoted the ACE index of tomato soil bacterial community structure and the abundance of nitrogen and phosphorus metabolism functional genes. The yield and crop water use efficiency (WUE) of spring tomato and autumn tomato in L1 were about 14.15% and 11.27%, 12.64% and 10.35% higher than those in L2. With the decrease of capillary arrangement density, the diversity of bacterial community structure in tomato rhizosphere soil decreased, and the abundance of nitrogen and phosphorus metabolism functional genes of soil bacteria also decreased. The small abundance of soil bacterial functional genes limited the absorption of soil nutrients by tomato roots and roots morphological development. The yield and crop water use efficiency of spring and autumn tomato in C2 were significantly higher than those in C3 about 34.76% and 15.23%, 31.94% and 13.91%, respectively. The positive interaction between soil bacterial community and root morphological development of tomato was promoted by the capillary layout measures of MSPF. Discussion: The L1C2 treatment had a stable bacterial community structure and good root morphological development, which positively promoted the increase of tomato yield. The interaction between soil microorganisms and roots of tomato was regulated by optimizing the layout measures of MSPF to provide data support for water-saving and yield-increasing of tomato in Northwest China.

13.
Biosensors (Basel) ; 13(2)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36831924

Au particles are commonly used for deposition on the surface of a bipolar electrode (BPE) in order to amplify electrochemical and electrochemiluminescence (ECL) signal because of their excellent conductivity, biocompatibility, and large surface area. In this work, a closed BPE device was fabricated and Au particles were deposited on the two poles of a BPE via bipolar deposition. Results indicated that the electrochemical stability of Au film on the anode part of the BPE and the reduction of AuCl4- to Au on the cathode part of the BPE depended on the conductivity of the solution. The prepared Au-Au BPE exhibited a remarkable amplification effect on the ECL signal. Then, a specific sensing interface was constructed on one pole of the BPE for the visual detection of prostate-specific antigens (PSA) based on sandwich-type immunoreactions between primary PSA antibodies (Ab1) on the electrode surface, PSA, and SiO2 nanoparticles labeled secondary PSA antibodies (SiO2-Ab2). The designed biosensor exhibited a good linear relationship for the ECL detection of PSA in the range of 1 × 10-6 to 1 × 10-10 g/mL with a correlation coefficient of 0.9866; the limit of detection (LOD) was 1.5 × 10-11 g/mL. Additionally, the biosensor can realize the electrochemical imaging of PSA by regulating the electrochemical oxidation of the Au anode with the immunoreactions on the cathode part of BPE. Therefore, the small, portable and highly sensitive biosensors have great potential for on-site detection.


Biosensing Techniques , Metal Nanoparticles , Humans , Male , Prostate-Specific Antigen , Luminescent Measurements/methods , Silicon Dioxide , Electroplating , Prostate , Limit of Detection , Electrodes , Biosensing Techniques/methods , Electrochemical Techniques/methods , Gold
14.
Materials (Basel) ; 16(4)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36837280

A series of bifunctional Schiff base metal catalysts (Zn-NPClR, Zn-NPXH, and M-NPClH) with two quaternary ammonium groups were prepared for carbon dioxide (CO2) and epoxide coupling reactions. The effects of the reaction variables on the catalytic activity were systematically investigated, and the optimal reaction conditions (120 °C, 1 MPa CO2, 3 h) were screened. The performances of different metal-centered catalysts were evaluated, and Co-NPClH showed excellent activity. This kind of bifunctional catalyst has a wide range of substrate applicability, excellent stability, and can be reused for more than five runs. A relatively high TOF could reach up to 1416 h-1 with Zn-NPClH as catalyst by adjusting reaction factors. In addition, the kinetic study of the coupling reaction catalyzed by three catalysts (Zn, Co, and Ni) was carried out to obtain the activation energy (Ea) for the formation of cyclic carbonates. Finally, a possible mechanism for this cyclization reaction was proposed.

15.
Talanta ; 257: 124379, 2023 May 15.
Article En | MEDLINE | ID: mdl-36812657

A novel portable and disposable bipolar electrode (BPE)-electrochemiluminescence (ECL) device was fabricated for fumonisin B1 (FB1) detection. BPE was fabricated by using MWCNTs and polydimethylsiloxane (PDMS) due to their excellent electrical conductivity and good mechanical stiffness. After the deposition of Au NPs on the cathode of BPE, the ECL signal could be improved 89-fold. Then a specific aptamer-based sensing strategy was constructed by grafting capture DNA on Au surface, followed by hybridizing with aptamer. Meanwhile, an excellent catalyst, Ag NPs was labeled on aptamer to activate oxygen reduction reaction, leading to a 13.8-fold enhancement in ECL signal at the anode of BPE. Under the optimal conditions, the biosensor exhibited a wide linear range of 0.10 pg/mL to 10 ng/mL for FB1 detection. Meanwhile, it demonstrated satisfactory recoveries for real sample detection with good selectivity, making it to be a convenient and sensitive device for mycotoxin assay.


Biosensing Techniques , Luminescent Measurements , Electrochemical Techniques , Electrodes , Oligonucleotides , Dimethylpolysiloxanes
16.
Microorganisms ; 10(6)2022 Jun 19.
Article En | MEDLINE | ID: mdl-35744770

How microbial communities respond to extreme conditions in the stratosphere remains unclear. To test this effect, cyanobacterial crusts collected from Tengger Desert were mounted to high balloons and briefly exposed (140 min) to high UV irradiation and low temperature in the stratosphere at an altitude of 32 km. Freezing and thawing treatments were simulated in the laboratory in terms of the temperature fluctuations during flight. Microbial community composition was characterized by sequencing at the level of DNA and RNA. After exposure to the stratosphere, the RNA relative abundances of Kallotenue and Longimicrobium increased by about 2-fold, while those of several dominant cyanobacteria genera changed slightly. The RNA relative abundances of various taxa declined after freezing, but increased after thawing, whereas cyanobacteria exhibited an opposite change trend. The DNA and RNA relative abundances of Nitrososphaeraceae were increased by 1.4~2.3-fold after exposure to the stratosphere or freezing. Exposure to stratospheric environmental conditions had little impact on the total antioxidant capacity, photosynthetic pigment content, and photosynthetic rate, but significantly increased the content of exopolysaccharides by 16%. The three treatments (stratospheric exposure, freezing, and thawing) increased significantly the activities of N-acetyl-ß-D-glucosidase (26~30%) and ß-glucosidase (14~126%). Our results indicated cyanobacterial crust communities can tolerate exposure to the stratosphere. In the defense process, extracellular organic carbon degradation and transformation play an important role. This study makes the first attempt to explore the response of microbial communities of cyanobacterial crusts to a Mars-like stratospheric extreme environment, which provides a new perspective for studying the space biology of earth communities.

17.
Front Microbiol ; 13: 848908, 2022.
Article En | MEDLINE | ID: mdl-35495652

Archaea exhibit strong community heterogeneity with microhabitat gradients and are a non-negligible part of biocrust's microorganisms. The study on archaeal biogeography in biocrusts could provide new insights for its application in environmental restoration. However, only a few studies on assembly processes and co-occurrence patterns of the archaeal community in patchy biocrusts have been reported, especially considering the number of species pools (SPs). Here, we comprehensively collected biocrusts across 3,500 km of northern China. Different successional biocrusts from various regions contain information of local climate and microenvironments, which can shape multiple unique archaeal SPs. The archaeal community differences in the same successional stage exceeded the variations between successional stages, which was due to the fact that the heterogeneous taxa tended to exchange between unknown patches driven by drift. We also comparatively studied the driving forces of community heterogeneity across three to ten SPs, and assembly and co-occurrence patterns were systematically analyzed. The results revealed that the impact of spatial factors on biogeographic patterns was greater than that of environmental and successional factors and that impact decreased with the number of SPs considered. Meanwhile, community heterogeneity at the phylogenetic facet was more sensitive to these driving factors than the taxonomic facet. Subgroups 1 (SG1) and 2 (SG2) of the archaeal communities in biocrusts were dominated by Nitrososphaeraceae and Haloarchaea, respectively. The former distribution pattern was associated with non-salinity-related variables and primarily assembled by drift, whereas the latter was associated with salinity-related variables and primarily assembled by homogeneous selection. Finally, network analysis indicated that the SG1 network had a higher proportion of competition and key taxa than the SG2 network, but the network of SG2 was more complex. Our study suggested that the development of the archaeal community was not consistent with biocrusts succession. The dominant taxa may determine the patterns of community biogeography, assembly, and co-occurrence.

18.
Microb Ecol ; 83(1): 100-113, 2022 Jan.
Article En | MEDLINE | ID: mdl-33733304

Photosynthetic microorganisms are widely distributed in the soil and play an important role in plant-free soil crusts. However, the distribution and environmental drivers of phototrophic microbial communities in physical soil crusts, where the abundance of cyanobacteria is low, are scarcely understood. Here, we performed high-throughput sequencing of pufM and 18S rRNA genes in soil crusts at different elevations on the Tibetan Plateau and used the data combined with environmental variables to analyze the diversity and structure of phototrophic microbial communities. We found that the dominant taxa of aerobic anoxygenic phototrophic bacteria (AAPB) and eukaryotic phototrophic microorganisms (EPM) were shown to shift with elevation. The phototrophic microbial diversity showed a single-peak pattern, with the lowest diversity of AAPB and highest diversity of EPM at middle elevations. Moreover, the elevation and soil property determined the phototrophic microbial community. Soil salts, especially Cl-, were the most important for AAPB. Likewise, soil nutrients, especially carbon, were the most important for EPM. The relationship between high-abundance taxa and environmental variables showed that Rhizobiales was significantly negatively correlated with salt ions and positively correlated with chlorophyll. Rhodobacterales showed the strongest and significant positive associations with Cl-. Chlorophyceae and Bacillariophyceae were positively correlated with CO32-. These results indicated that salinity and soil nutrients affected the diversity and structure of microbial communities. This study contributes to our understanding of the diversity, composition, and structure of photosynthetic microorganisms in physical soil crusts and helps in developing new approaches for controlling desertification and salinization and improving the desert ecological environment.


Eukaryota , Soil , Bacteria, Aerobic/genetics , Nutrients , Soil/chemistry , Soil Microbiology , Tibet
19.
Materials (Basel) ; 16(1)2022 Dec 21.
Article En | MEDLINE | ID: mdl-36614390

Ammonium, imidazole, or pyridinium functionalized ß-cyclodextrins (ß-CDs) were used as efficient one-component bifunctional catalysts for the coupling reaction of carbon dioxide (CO2) and epoxide without the addition of solvent and metal. The influence of different catalysts and reaction parameters on the catalytic performance were examined in detail. Under optimal conditions, Im-CD1-I catalysts functionalized with imidazole groups were able to convert various epoxides into target products with high selectivity and good conversion rates. The one-component bifunctional catalysts can also be recovered easily by filtration and reused at least for five times with only slight decrease in catalytic performance. Finally, a possible process for hydroxyl group-assisted ring-opening of epoxide and functionalized group- induced activation of CO2 was presented.

20.
ACS Omega ; 6(21): 13544-13553, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-34095649

Facilitating charge separation and increasing surface active sites have always been the goals of photocatalysis. Herein, we synthesized a Ni-doped Zn0.8Cd0.2S hollow sphere photocatalyst with a facile one-step hydrothermal method. Energy-dispersive spectroscopy mapping showed the high dispersion of Ni ions in the Zn0.8Cd0.2S hollow spheres. The experimental results confirmed that Ni doping reduced the band structure of the substrate, suppressed the recombination of photo-induced electrons and holes, and provided more reactive sites. Therefore, the photocatalytic activity had been greatly improved. As a consequence, the detected photocatalytic H2 evolution rate increased up to 33.81 mmol·h-1·g-1 over an optimal Ni doping (5 wt %) of Zn0.8Cd0.2S hollow spheres, which was 20.87-fold higher than that of pure CdS. Elemental mapping showed that the Zn element was mainly distributed in the outermost layer of the hollow spheres; this might be the critical factor that enabled Ni-doped Zn x Cd1-x S to maintain excellent stability.

...