Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 652
1.
Front Microbiol ; 15: 1392441, 2024.
Article En | MEDLINE | ID: mdl-38706968

Aims: The high salinity of soil, nutrient scarcity, and poor aggregate structure limit the exploitation and utilization of coastal mudflat resources and the sustainable development of saline soil agriculture. In this paper, the effects of applying exogenous organic acids combined with biological substrate on the composition and diversity of soil bacterial community were studied in moderately saline mudflats in Jiangsu Province. Methods: A combination of three exogenous organic acids (humic acid, fulvic acid, and citric acid) and four biological substrates (cottonseed hull, cow manure, grass charcoal, and pine needle) was set up set up on a coastal saline mudflat planted with a salt-tolerant forage grass, sweet sorghum. A total of 120 kg ha-1 of organic acids and 5,000 kg ha-1 of substrates were used, plus two treatments, CK without application of organic acids and substrates and CK0 in bare ground, for a total of 14 treatments. Results: No significant difference was found in the alpha diversity of soil bacterial community among all treatments (p ≥ 0.05), with the fulvic acid composite pine needle (FPN) treatment showing the largest increase in each index. The beta diversity differed significantly (p < 0.05) among all treatments, and the difference between citric acid-grass charcoal (CGC) and CK treatments was greater than that of other treatments. All treatments were effective in increasing the number of bacterial ASVs and affecting the structural composition of the community. Citric acid-cow manure (CCM), FPN, and CGC treatments were found to be beneficial for increasing the relative abundance of Proteobacteria, Chloroflexi, and Actinobacteria, respectively. By contrast, all treatments triggered a decrease in the relative abundance of Acidobacteria. Conclusion: Among the 12 different combinations of exogenous organic acid composite biomass substrates applied to the coastal beach, the CGC treatment was more conducive to increasing the relative abundance of the salt-tolerant bacteria Proteobacteria, Chloroflexi and Actinobacteria, and improving the community structure of soil bacteria. The FPN treatment was more conducive to increase the species diversity of the soil bacterial community and adjust the species composition of the bacterial community.

2.
Br J Cancer ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594370

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.

3.
Heliyon ; 10(8): e29145, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38628746

The Mongolian medical silver needles often encounter issues of bending, fracturing, and blunting in clinical applications. Similarly, Mongolian warm needles can cause burns on patients due to inaccurate temperature control. In this study, we developed an Ag85Cu15 alloy specifically for acupuncture needles based on material preparation. By incorporating appropriate amounts of Mn and Ti elements, we were able to enhance the mechanical properties and biocompatibility of the acupuncture needles. Compared to commercially available silver needles, this alloy exhibited a significant increase in microhardness up to 210.2 Hv0.2 and an improved tensile strength of 880.2 MPa. Furthermore, we designed a thermoelectric effect-based temperature measurement model for precise control of the warm needle's temperature, enhancing the therapeutic effectiveness of the treatment.

4.
Angew Chem Int Ed Engl ; : e202402853, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598262

In the development of dendritic cell (DC) vaccines, the maturation of DCs is a critical stage. Adjuvants play a pivotal role in the maturation of DCs, with a major concern being to ensure both efficacy and safety. This study introduces an innovative approach that combines high efficacy with safety through the synthesis of micro-adjuvants grafted with copolymers of 2-(methacrylamido) glucopyranose (MAG) and methacryloxyethyl trimethyl ammonium chloride (DMC). The utilization of metal-free surface-initiated atom transfer radical polymerization enables the production of safe and recyclable adjuvants. These micrometer-sized adjuvants surpass the optimal size range for cellular endocytosis, enabling the retrieval and reuse of them during the ex vivo maturation process, mitigating potential toxicity concerns associated with the endocytosis of non-metabolized nanoparticles. Additionally, the adjuvants exhibit a "micro-ligand-mediated maturation enhancement" effect for DC maturation. This effect is influenced by the shape of the particle, as evidenced by the distinct promotion effects of rod-like and spherical micro-adjuvants with comparable sizes. Furthermore, the porous structure of the adjuvants enables them to function as cargo-carrying "micro-shuttles", releasing antigens upon binding to DCs to facilitate efficient antigen delivery.

5.
PLoS One ; 19(4): e0294227, 2024.
Article En | MEDLINE | ID: mdl-38564630

Current evidence suggests that DEP domain containing 1 (DEPDC1) has an important effect on non-small-cell lung cancer (NSCLC). However, the diagnostic value and the regulatory function within NSCLC are largely unclear. This work utilized publicly available databases and in vitro experiments for exploring, DEPDC1 expression, clinical features, diagnostic significance and latent molecular mechanism within NSCLC. According to our results, DEPDC1 was remarkably upregulated in the tissues of NSCLC patients compared with non-carcinoma tissues, linked with gender, stage, T classification and N classification based on TCGA data and associated with smoking status and stage according to GEO datasets. Meanwhile, the summary receiver operating characteristic (sROC) curve analysis result showed that DEPDC1 had a high diagnostic value in NSCLC (AUC = 0.96, 95% CI: 0.94-0.98; diagnostic odds ratio = 99.08, 95%CI: 31.91-307.65; sensitivity = 0.89, 95%CI: 0.81-0.94; specificity = 0.92, 95%CI: 0.86-0.96; positive predictive value = 0.94, 95%CI: 0.89-0.98; negative predictive value = 0.78, 95%CI: 0.67-0.90; positive likelihood ratio = 11.77, 95%CI: 6.11-22.68; and negative likelihood ratio = 0.12, 95%CI: 0.06-0.22). Subsequently, quantitative real-time PCR (qRT-PCR) and western blotting indicated that DEPDC1 was high expressed in NSCLC cells. According to the in vitro MTS and apoptotic assays, downregulated DEPDC1 expression targeting P53 signaling pathway inhibited the proliferation of NSCLC cells while promoting apoptosis of NSCLC cells. Moreover, DEPDC1 was significantly correlated with immune cell infiltrating levels in NSCLC based on TCGA data, which were primarily associated with T cells CD4 memory activated, macrophages M1, B cells memory, mast cells resting, T cells regulatory, monocytes, and T cells CD4 memory resting. Compared with the group with high expression of DEPDC1, the group with low expression level had higher scores for immune checkpoint inhibitors (ICIs) treatment. GSEA confirmed that DEPDC1 was involved in gene expression and tumor-related signaling pathways. Finally, DEPDC1 and its associated immune-related genes were shown to be enriched in 'receptor ligand activity', 'external side of plasma membrane', 'regulation of innate immune response', and 'Epstein-Barr virus infection' pathways. The present study demonstrates that DEPDC1 may contribute to NSCLC tumorigenesis and can be applied as the biomarker for diagnosis and immunology.


Carcinoma, Non-Small-Cell Lung , Epstein-Barr Virus Infections , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Herpesvirus 4, Human/metabolism , Signal Transduction , Neoplasm Proteins/genetics , GTPase-Activating Proteins/metabolism
8.
J Bone Miner Res ; 39(2): 106-115, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38477743

Artificial intelligence (AI) chatbots utilizing large language models (LLMs) have recently garnered significant interest due to their ability to generate humanlike responses to user inquiries in an interactive dialog format. While these models are being increasingly utilized to obtain medical information by patients, scientific and medical providers, and trainees to address biomedical questions, their performance may vary from field to field. The opportunities and risks these chatbots pose to the widespread understanding of skeletal health and science are unknown. Here we assess the performance of 3 high-profile LLM chatbots, Chat Generative Pre-Trained Transformer (ChatGPT) 4.0, BingAI, and Bard, to address 30 questions in 3 categories: basic and translational skeletal biology, clinical practitioner management of skeletal disorders, and patient queries to assess the accuracy and quality of the responses. Thirty questions in each of these categories were posed, and responses were independently graded for their degree of accuracy by four reviewers. While each of the chatbots was often able to provide relevant information about skeletal disorders, the quality and relevance of these responses varied widely, and ChatGPT 4.0 had the highest overall median score in each of the categories. Each of these chatbots displayed distinct limitations that included inconsistent, incomplete, or irrelevant responses, inappropriate utilization of lay sources in a professional context, a failure to take patient demographics or clinical context into account when providing recommendations, and an inability to consistently identify areas of uncertainty in the relevant literature. Careful consideration of both the opportunities and risks of current AI chatbots is needed to formulate guidelines for best practices for their use as source of information about skeletal health and biology.


Artificial intelligence chatbots are increasingly used as a source of information in health care and research settings due to their accessibility and ability to summarize complex topics using conversational language. However, it is still unclear whether they can provide accurate information for questions related to the medicine and biology of the skeleton. Here, we tested the performance of three prominent chatbots­ChatGPT, Bard, and BingAI­by tasking them with a series of prompts based on well-established skeletal biology concepts, realistic physician­patient scenarios, and potential patient questions. Despite their similarities in function, differences in the accuracy of responses were observed across the three different chatbot services. While in some contexts, chatbots performed well, and in other cases, strong limitations were observed, including inconsistent consideration of clinical context and patient demographics, occasionally providing incorrect or out-of-date information, and citation of inappropriate sources. With careful consideration of their current weaknesses, artificial intelligence chatbots offer the potential to transform education on skeletal health and science.


Artificial Intelligence , Bone and Bones , Humans , Bone and Bones/physiology , Bone Diseases/therapy
9.
Phytomedicine ; 128: 155527, 2024 Jun.
Article En | MEDLINE | ID: mdl-38489888

BACKGROUND: Pancreatic cancer, a tumor with a high metastasis rate and poor prognosis, is among the deadliest human malignancies. Investigating effective drugs for their treatment is imperative. Moracin D, a natural benzofuran compound isolated from Morus alba L., shows anti-inflammation and anti-breast cancer properties and is effective against Alzheimer's disease. However, the effect and mechanism of Moracin D action in pancreatic cancer remain obscure. PURPOSE: To investigate the function and molecular mechanism of Moracin D action in repressing the malignant progression of pancreatic cancer. METHODS: Pancreatic cancer cells were treated with Moracin D, and cell proliferation was evaluated by cell counting kit-8 (CCK-8) and immunofluorescence assays. The clonogenicity of pancreatic cancer cells was assessed based on plate colony formation and soft agar assay. Flow cytometry was used to detect cell apoptosis. The expression of proteins related to the apoptosis pathway was determined by Western blot analysis. Moracin D and XIAP were subjected to docking by auto-dock molecular docking analysis. Ubiquitination levels of XIAP and the interaction of XIAP and PARP1 were assessed by co-immunoprecipitation analysis. Moracin D's effects on tumorigenicity were assessed by a tumor xenograft assay. RESULTS: Moracin D inhibited cell proliferation, induced cell apoptosis, and regulated the protein expression of molecules involved in caspase-dependent apoptosis pathways. Moracin D suppressed clonogenicity and tumorigenesis of pancreatic cancer cells. Mechanistically, XIAP could interact with PARP1 and stabilize PARP1 by controlling its ubiquitination levels. Moracin D diminished the stability of XIAP and decreased the expression of XIAP by promoting proteasome-dependent XIAP degradation, further blocking the XIAP/PARP1 axis and repressing the progression of pancreatic cancer. Moracin D could dramatically improve the chemosensitivity of gemcitabine in pancreatic cancer cells. CONCLUSION: Moracin D repressed cell growth and tumorigenesis, induced cell apoptosis, and enhanced the chemosensitivity of gemcitabine through the XIAP/PARP1 axis in pancreatic cancer. Moracin D is a potential therapeutic agent or adjuvant for pancreatic cancer.


Apoptosis , Benzofurans , Benzopyrans , Cell Proliferation , Pancreatic Neoplasms , Poly (ADP-Ribose) Polymerase-1 , X-Linked Inhibitor of Apoptosis Protein , Pancreatic Neoplasms/drug therapy , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Apoptosis/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Animals , Benzofurans/pharmacology , Mice, Nude , Morus/chemistry , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Molecular Docking Simulation , Mice, Inbred BALB C , Gemcitabine , Xenograft Model Antitumor Assays
10.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 12-18, 2024 Feb 01.
Article En, Zh | MEDLINE | ID: mdl-38475946

With the development of periodontal regenerative technology, an increasing number of scholars reported that advanced periodontitis involving teeth can be preserved through intentional replantation. Intentional replantation has become the last possible method to preserve natural teeth for advance periodontitis with signs of tooth extraction. However, the indications of intentional replantation are strict, and the success of the operation is closely related to the condition of cases and the operation skills of doctors. In this article, the operation steps and criteria of intentional replantation were summarized by introducing three success cases of advanced periodontitis involving teeth preserved by intentional replantation. The relevant factors that affect the prognosis of intentional replantation in advanced periodontitis involving teeth preservation were analyzed to help clinicians preserve natural teeth.


Periodontitis , Tooth Replantation , Humans , Tooth Replantation/methods , Prognosis , Tooth Extraction
11.
Pharmacol Res ; 201: 107105, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367917

Chronic interstitial fibrosis presents a significant challenge to the long-term survival of transplanted kidneys. Our research has shown that reduced expression of acyl-coenzyme A oxidase 1 (ACOX1), which is the rate-limiting enzyme in the peroxisomal fatty acid ß-oxidation pathway, contributes to the development of fibrosis in renal allografts. ACOX1 deficiency leads to lipid accumulation and excessive oxidation of polyunsaturated fatty acids (PUFAs), which mediate epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) reorganization respectively, thus causing fibrosis in renal allografts. Furthermore, activation of Toll-like receptor 4 (TLR4)-nuclear factor kappa-B (NF-κB) signaling induced ACOX1 downregulation in a DNA methyltransferase 1 (DNMT1)-dependent manner. Overconsumption of PUFA resulted in endoplasmic reticulum (ER) stress, which played a vital role in facilitating ECM reorganization. Supplementation with PUFAs contributed to delayed fibrosis in a rat model of renal transplantation. The study provides a novel therapeutic approach that can delay chronic interstitial fibrosis in renal allografts by targeting the disorder of lipid metabolism.


Acyl-CoA Oxidase , Kidney Transplantation , Kidney , Metabolic Diseases , Animals , Rats , Acyl-CoA Oxidase/metabolism , Allografts , Fibrosis , Kidney/pathology , Lipids
12.
Discov Oncol ; 15(1): 29, 2024 Feb 04.
Article En | MEDLINE | ID: mdl-38310621

PURPOSE: Intraoperative frozen section pathology (FS) is widely used to guide surgical strategies while the accuracy is relatively low. Underestimating the pathological condition may result in inadequate surgical margins. This study aims to identify CT imaging features related to upgraded FS and develop a predictive model. METHODS: Collected data from 860 patients who underwent lung surgery from January to December 2019. We analyzed the consistency rate of FS and categorized the patients into three groups: Group 1 (n = 360) had both FS and Formalin-fixed Paraffin-embedded section (FP) as non-invasive adenocarcinoma (IAC); Group 2 (n = 128) had FS as non-IAC but FP as IAC; Group 3 (n = 372) had both FS and FP as IAC. Clinical baseline characteristics were compared and propensity score adjustment was used to mitigate the effects of these characteristics. Univariate analyses identified imaging features with inter-group differences. A multivariate analysis was conducted to screen independent risk factors for FS upgrade, after which a logistic regression prediction model was established and a receiver operating characteristic (ROC) curve was plotted. RESULTS: The consistency rate of FS with FP was 84.19%. 26.67% of the patients with non-IAC FS diagnosis were upgraded to IAC. The predictive model's Area Under Curve (AUC) is 0.785. Consolidation tumor ratio (CTR) ≤ 0.5 and smaller nodule diameter are associated with the underestimation of IAC in FS. CONCLUSION: CT imaging has the capacity to effectively detect patients at risk of upstaging during FS.

13.
Materials (Basel) ; 17(4)2024 Feb 17.
Article En | MEDLINE | ID: mdl-38399173

Red mud (RM) and Yellow River sediment (YRS) are challenging to handle as waste materials. In this study, RM with geopolymer and heavy metal adsorption characteristics was combined with YRS and ground granulated blast furnace slag (GGBS) to develop a porous geopolymer with high strength and high adsorption performance. A geopolymer cementitious material with high strength was prepared using high temperature water bath curing of 90 °C and different dosages of YRS, and a porous geopolymer concrete was further prepared. The compressive strength, fluidity and setting time of geopolymer cementitious materials were tested, and the compressive strength, porosity and permeability of porous geopolymer concrete were also tested. The environmental impact assessment of geopolymer cementitious materials was further conducted. The hydration products and microstructure of geopolymer gel materials were analyzed by XRD, SEM and FT-IR tests. The results show that the addition of YRS can effectively prolong the setting time of the geopolymer cementitious material, and the enhancement rate is as high as 150% compared with the geopolymer cementitious materials without the addition of YRS. An appropriate amount of YRS can improve the compressive strength of the geopolymer cementitious materials, and its early compressive strength can be further improved under the high temperature water bath curing of 90 °C, and the compressive strength at an age of 3 d can be up to 86.7 MPa. Meanwhile, the compressive strength of porous geopolymer concrete at an age of 28 d is up to 28.1 MPa. YRS can participate in geopolymer reactions, and high temperature water bath curing can promote the reaction degree. Curing method and YRS dosages have little effect on the porosity and permeability of the porous geopolymer concrete. The porous geopolymer has a good heavy metal adsorption effect, and the alkaline pH values can be gradually diluted to neutral.

14.
Nat Plants ; 10(1): 118-130, 2024 01.
Article En | MEDLINE | ID: mdl-38168610

Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.


Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genetics , Drought Resistance , Plant Roots/metabolism , Cell Wall/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Water/metabolism
15.
J Orthop Res ; 42(6): 1276-1282, 2024 Jun.
Article En | MEDLINE | ID: mdl-38245845

Large language model (LLM) chatbots possess a remarkable capacity to synthesize complex information into concise, digestible summaries across a wide range of orthopedic subject matter. As LLM chatbots become widely available they will serve as a powerful, accessible resource that patients, clinicians, and researchers may reference to obtain information about orthopedic science and clinical management. Here, we examined the performance of three well-known and easily accessible chatbots-ChatGPT, Bard, and Bing AI-in responding to inquiries relating to clinical management and orthopedic concepts. Although all three chatbots were found to be capable of generating relevant responses, ChatGPT outperformed Bard and BingAI in each category due to its ability to provide accurate and complete responses to orthopedic queries. Despite their promising applications in clinical management, shortcomings observed included incomplete responses, lack of context, and outdated information. Nonetheless, the ability for these LLM chatbots to address these inquires has largely yet to be evaluated and will be critical for understanding the risks and opportunities of LLM chatbots in orthopedics.


Orthopedics , Humans
16.
Regen Biomater ; 11: rbad101, 2024.
Article En | MEDLINE | ID: mdl-38173771

As a superior alternative to sutures, tissue adhesives have been developed significantly in recent years. However, existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces, bond weakly in wet environments and lack bioactivity. In this study, a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion. The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments, which can effectively improve the wet bonding strength. This citrate-based polyurethane adhesive provides rapid, non-invasive, liquid-tight and seamless closure of skin incisions, overcoming the limitations of sutures and commercial tissue adhesives. In addition, it exhibits biocompatibility, biodegradability and hemostatic properties. The degradation product citrate could promote the process of angiogenesis and accelerate wound healing. This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.

17.
Langmuir ; 40(3): 1941-1949, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38207337

The tribological behavior of carboxylic acids, especially oleic acid, in boundary lubrication conditions is a subject of interest. This study presents the results of four-ball tribological tests conducted under varying contact pressures and sliding speeds. The findings reveal a critical turning speed within a confined zone, which causes a significant change in the frictional performances of oleic acid, leading to the formation of an ultralow wear tribofilm. This tribofilm, predominantly composed of oxyhydrogen compounds and hydrocarbons with more than five carbon atoms, is generated by the molecular action of oleic acid. Reactive nonequilibrium molecular dynamics simulations demonstrate that the shear speed-dependent decomposition modes of oleic acid and the transformation of the lubrication slip interface are the fundamental processes underlying the formation of this ultralow-wear boundary tribofilm.

18.
Small ; : e2307995, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38212277

A simple, reliable method for identifying ß-lactoglobulin (ß-LG) in dairy products is needed to protect those with ß-LG allergies. A common, practical strategy for target detection is designing simplified nucleic acid nanodevices by integrating functional components. This work presents a label-free modular ß-LG aptasensor consisting of an aptamer-loop G-quadruplex (G4), the working conformation of which is regulated by conformational antagonism to ensure respective module functionality and the related signal transduction. The polymorphic conformations of the module-fused sequence are systematically characterized, and the cause is revealed as shifting antagonistic equilibrium. Combined with conformational folding dynamics, this helped regulate functional conformations by fine-tuning the sequences. Furthermore, the principle of specific ß-LG detection by parallel G4 topology is examined as binding on the G4 aptamer loop by ß-LG to reinforce the G4 topology and fluorescence. Finally, a label-free, assembly-free, succinct, and turn-on fluorescent aptasensor is established, achieving excellent sensitivity across five orders of magnitude, rapidly detecting ß-LG within 22-min. This study provides a generalizable approach for the conformational regulation of module-fused G4 sequences and a reference model for creating simplified sensing devices for a variety of targets.

19.
Talanta ; 271: 125664, 2024 May 01.
Article En | MEDLINE | ID: mdl-38237281

We presented a label-free fluorescent biosensor based on magnetic dual-aptamer allosteric regulation of ß-lactoglobulin (ß-LG) detection. The bovine serum albumin (BSA) acted as the bridge to connect amino-modified magnetic beads and aptamer, which synthesized pyramid-type probes (MBAP) with high capture and reduced nonspecific adsorption. Moreover, the original aptamer was tailored and then designed as a bivalent aptamer to fabricate allosteric signal probes (ASP). The ASP can both specifically capture ß-LG and output the fluorescence signal. The detection mechanism is as follows. The combination of the dual-aptamer and ß-LG triggered the allosteric change, resulting in the release of SYBR Green (SG I) from the allosteric signal probe and change signals. This method exhibits a broad linear detection range from 10 ng/mL to 1 mg/mL and the limit of detection reaches as low as 8.06 ng/mL. This study provides a highly generalizable strategy for protein biomolecular detection via replacing different target aptamers.


Aptamers, Nucleotide , Biosensing Techniques , Lactoglobulins , Allosteric Regulation , Coloring Agents , Biosensing Techniques/methods
20.
Appl Opt ; 63(2): 327-337, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38227225

Source mask optimization (SMO) is a widely used computational lithography technique for compensating lithographic distortion. However, line-end shortening is still a key factor that cannot be easily corrected and affects the image fidelity of lithography at advanced nodes. This paper proposes a source mask optimization method that suppresses line-end shortening and improves lithography fidelity. An adaptive hybrid weight method is employed to increase the weights of the line end during the optimization, which adaptively updates the weights in each iteration according to the edge placement error (EPE). A cost function containing a penalty term based on the normalized image log slope (NILS) is established to ensure the fidelity of the overall feature when paying more attention to the line-end region. The scope of this penalty term is regulated by widening and extending the split contour to further reduce the line-end shortening. Simulation results show that the proposed method can effectively suppress the line-end shortening and improve the lithography fidelity compared with the traditional SMO method.

...