Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 23(13): 3016-3033, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37294576

RESUMEN

Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.


Asunto(s)
Rayos Láser , Proteínas , Humanos , Cristalografía por Rayos X , Proteínas/química , Inyecciones , NAD(P)H Deshidrogenasa (Quinona)
2.
Structure ; 31(2): 138-151.e5, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630960

RESUMEN

NendoU from SARS-CoV-2 is responsible for the virus's ability to evade the innate immune system by cleaving the polyuridine leader sequence of antisense viral RNA. Here we report the room-temperature structure of NendoU, solved by serial femtosecond crystallography at an X-ray free-electron laser to 2.6 Å resolution. The room-temperature structure provides insight into the flexibility, dynamics, and other intrinsic properties of NendoU, with indications that the enzyme functions as an allosteric switch. Functional studies examining cleavage specificity in solution and in crystals support the uridine-purine cleavage preference, and we demonstrate that enzyme activity is fully maintained in crystal form. Optimizing the purification of NendoU and identifying suitable crystallization conditions set the benchmark for future time-resolved serial femtosecond crystallography studies. This could advance the design of antivirals with higher efficacy in treating coronaviral infections, since drugs that block allosteric conformational changes are less prone to drug resistance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cristalografía por Rayos X , Temperatura , Electrones , Rayos Láser
3.
PLoS One ; 17(8): e0267370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35913965

RESUMEN

Francisella tularensis is an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable. F. tularensis outer membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) of F. tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a ß-barrel domain consistent with alphafold2's prediction of an eight stranded ß-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal ß-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal ß-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it.


Asunto(s)
Francisella tularensis , Tularemia , Detergentes , Humanos , Dispersión del Ángulo Pequeño , Tularemia/microbiología , Difracción de Rayos X
4.
Life (Basel) ; 11(11)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34833108

RESUMEN

BACKGROUND: Cockayne syndrome (CS) is a rare form of dwarfism that is characterized by progressive premature aging. CS is typically caused by mutations in the excision repair cross-complementing protein group 6 (ERCC6) gene that encodes the CS group B (CSB) protein. Using whole exome sequencing, we recently identified a novel homozygous missense mutation (Leu536Trp) in CSB in a Taiwanese boy with CS. Since the current database (Varsome) interprets this variant as likely pathogenic, we utilized a bioinformatic tool to investigate the impact of Leu536Trp as well as two other variants (Arg453Ter, Asp532Gly) in similar articles on the CSB protein structure stability. METHODS: We used iterative threading assembly refinement (I-TASSER) to generate a predictive 3D structure of CSB. We calculated the change of mutation energy after residues substitution on the protein stability using I-TASSER as well as the artificial intelligence program Alphafold. RESULTS: The Asp532Gly variant destabilized both modeled structures, while the Leu536Trp variant showed no effect on I-TASSER's model but destabilized the Alphafold's modeled structure. CONCLUSIONS: We propose here the first case of CS associated with a novel homozygous missense mutation (Leu536Trp) in CSB. Furthermore, we suggest that the Asp532Gly and Leu536Trp variants are both pathogenic after bioinformatic analysis of protein stability.

5.
IUCrJ ; 8(Pt 6): 878-895, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804542

RESUMEN

Here, we illustrate what happens inside the catalytic cleft of an enzyme when substrate or ligand binds on single-millisecond timescales. The initial phase of the enzymatic cycle is observed with near-atomic resolution using the most advanced X-ray source currently available: the European XFEL (EuXFEL). The high repetition rate of the EuXFEL combined with our mix-and-inject technology enables the initial phase of ceftriaxone binding to the Mycobacterium tuberculosis ß-lactamase to be followed using time-resolved crystallography in real time. It is shown how a diffusion coefficient in enzyme crystals can be derived directly from the X-ray data, enabling the determination of ligand and enzyme-ligand concentrations at any position in the crystal volume as a function of time. In addition, the structure of the irreversible inhibitor sulbactam bound to the enzyme at a 66 ms time delay after mixing is described. This demonstrates that the EuXFEL can be used as an important tool for biomedically relevant research.

6.
Commun Biol ; 3(1): 482, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879423

RESUMEN

In higher plants, chloroplast ATP synthase has a unique redox switch on its γ subunit that modulates enzyme activity to limit ATP hydrolysis at night. To understand the molecular details of the redox modulation, we used single-particle cryo-EM to determine the structures of spinach chloroplast ATP synthase in both reduced and oxidized states. The disulfide linkage of the oxidized γ subunit introduces a torsional constraint to stabilize the two ß hairpin structures. Once reduced, free cysteines alleviate this constraint, resulting in a concerted motion of the enzyme complex and a smooth transition between rotary states to facilitate the ATP synthesis. We added an uncompetitive inhibitor, tentoxin, in the reduced sample to limit the flexibility of the enzyme and obtained high-resolution details. Our cryo-EM structures provide mechanistic insight into the redox modulation of the energy regulation activity of chloroplast ATP synthase.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos/química , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Spinacia oleracea/enzimología , Biocatálisis , ATPasas de Translocación de Protón de Cloroplastos/ultraestructura , Microscopía por Crioelectrón , Luz , Modelos Biológicos , Modelos Moleculares , Nucleótidos/metabolismo , Oxidación-Reducción , Dominios Proteicos , Subunidades de Proteína/química , Estadística como Asunto , Relación Estructura-Actividad
7.
Sci Rep ; 10(1): 4163, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123280

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Sci Rep ; 9(1): 17606, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772280

RESUMEN

Membrane-embedded proteins are critical to the establishment, survival and persistence in the host of the Lyme disease bacterium Borrelia burgdorferi (Bb), but to date, there are no solved structures of transmembrane proteins representing these attractive therapeutic targets. All available structures from the genus Borrelia represent proteins expressed without a membrane-targeting signal peptide, thus avoiding conserved pathways that modify, fold and assemble membrane protein complexes. Towards elucidating structure and function of these critical proteins, we directed translocation of eleven expression-optimized Bb virulence factors, including the signal sequence, to the Escherichia coli membrane, of which five, BBA57, HtrA, BB0238, BB0323, and DipA, were expressed with C-terminal His-tags. P66 was also expressed using the PelB signal sequence fused to maltose binding protein. Membrane-associated BBA57 lipoprotein was solubilized by non-ionic and zwitterionic detergents. We show BBA57 translocation to the outer membrane, purification at a level sufficient for structural studies, and evidence for an α-helical multimer. Previous studies showed multiple critical roles of BBA57 in transmission, joint arthritis, carditis, weakening immune responses, and regulating other Bb outer surface proteins. In describing the first purification of membrane-translocated BBA57, this work will support subsequent studies that reveal the precise mechanisms of this important Lyme disease virulence factor.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Secuencia de Bases , Borrelia burgdorferi/patogenicidad , Cromatografía de Afinidad/métodos , Detergentes , Escherichia coli , Lipoproteínas/genética , Lipoproteínas/aislamiento & purificación , Níquel , Plásmidos/genética , Dominios Proteicos , Multimerización de Proteína , Señales de Clasificación de Proteína/fisiología , Estructura Secundaria de Proteína , Sistemas de Translocación de Proteínas , Transporte de Proteínas , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Virulencia/genética
10.
Nat Commun ; 10(1): 5021, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685819

RESUMEN

The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.


Asunto(s)
Electrones , Rayos Láser , Proteínas de la Membrana/química , Cristalografía , Cianobacterias/metabolismo , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Electricidad Estática , Sincrotrones , Thermosynechococcus , Rayos X
11.
J Phys Chem Lett ; 10(3): 441-446, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30566358

RESUMEN

X-ray free electron lasers (XFELs) provide ultrashort intense X-ray pulses suitable to probe electron dynamics but can also induce a multitude of nonlinear excitation processes. These affect spectroscopic measurements and interpretation, particularly for upcoming brighter XFELs. Here we identify and discuss the limits to observing classical spectroscopy, where only one photon is absorbed per atom for a Mn2+ in a light element (O, C, H) environment. X-ray emission spectroscopy (XES) with different incident photon energies, pulse intensities, and pulse durations is presented. A rate equation model based on sequential ionization and relaxation events is used to calculate populations of multiply ionized states during a single pulse and to explain the observed X-ray induced spectral lines shifts. This model provides easy estimation of spectral shifts, which is essential for experimental designs at XFELs and illustrates that shorter X-ray pulses will not overcome sequential ionization but can reduce electron cascade effects.

12.
IUCrJ ; 5(Pt 5): 619-634, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30224965

RESUMEN

Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxo-bacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruiting-body formation of this photomorphogenic bacterium. SaBphP1 lacks a conserved histidine (His) in the chromophore-binding domain that stabilizes the Pr state in the classical BphPs. Instead it contains a threonine (Thr), a feature that is restricted to several myxobacterial phytochromes and is not evolutionarily understood. SaBphP1 structures of the chromophore binding domain (CBD) and the complete photosensory core module (PCM) in wild-type and Thr-to-His mutant forms reveal details of the molecular mechanism of the Pr/Pfr transition associated with the physiological response of this myxobacterium to red light. Specifically, key structural differences in the CBD and PCM between the wild-type and the Thr-to-His mutant involve essential chromophore contacts with proximal amino acids, and point to how the photosignal is transduced through the rest of the protein, impacting the essential enzymatic activity in the photomorphogenic response of this myxobacterium.

13.
Nature ; 530(7589): 202-6, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26863980

RESUMEN

The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.


Asunto(s)
Cristalografía por Rayos X/métodos , Complejo de Proteína del Fotosistema II/química , Cristalización , Modelos Moleculares
14.
PLoS One ; 10(8): e0136507, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26295457

RESUMEN

The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.


Asunto(s)
Vacunas contra el SIDA/química , Proteína gp41 de Envoltorio del VIH/química , VIH-1/inmunología , Fragmentos de Péptidos/química , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/aislamiento & purificación , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Fragmentos de Péptidos/inmunología , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/inmunología , Resonancia por Plasmón de Superficie , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/aislamiento & purificación
15.
Protein Expr Purif ; 114: 1-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25979464

RESUMEN

Heliobacterium modesticaldum is an anaerobic photosynthetic bacterium that grows optimally at pH 6-7 and 52°C and is the only phototrophic member of the Firmicutes phylum family (gram-positive bacteria with low GC content). The ATP synthase of H. modesticaldum was isolated and characterized at the biochemical and biophysical levels. The isolated holoenzyme exhibited the subunit patterns of F-type ATP synthases containing a 5-subunit hydrophilic F1 subcomplex and a 3-subunit hydrophobic F0 subcomplex. ATP hydrolysis by the isolated HF1F0 ATP synthase was successfully detected after pretreatment with different detergents by an in-gel ATPase activity assay, which showed that the highest activity was detected in the presence of mild detergents such as LDAO; moreover, high catalytic activity in the gel was already detected after the initial incubation period of 0.5h. In contrast, HF1F0 showed extremely low ATPase activity in harsher detergents such as TODC. The isolated fully functional enzyme will form the basis for future structural studies.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Clostridiales/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/aislamiento & purificación , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Electroforesis en Gel de Poliacrilamida , ATPasas de Translocación de Protón/metabolismo
16.
Nature ; 513(7517): 261-5, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25043005

RESUMEN

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.


Asunto(s)
Cristalografía por Rayos X , Cianobacterias/química , Modelos Moleculares , Complejo de Proteína del Fotosistema II/química , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...