Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Int J Biol Macromol ; 274(Pt 1): 133047, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857722

RESUMEN

Bacterial cellulose (BC) has been found extensive applications in diverse domains for its exceptional attributes. However, the lack of antibacterial properties hampers its utilization in food and biomedical sectors. Leucocin, a bacteriocin belonging to class IIa, is synthesized by Leuconostoc that demonstrates potent efficacy against the foodborne pathogen, Listeria monocytogenes. In the current study, co-culturing strategy involving Kosakonia oryzendophytica FY-07 and Leuconostoc carnosum 4010 was used to confer anti-listerial activity to BC, which resulted in the generation of leucocin-containing BC (BC-L). The physical characteristics of BC-L, as determined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were similar to the physical characteristics of BC. Notably, the experimental results of disc diffusion and growth curve indicated that the BC-L film exhibited a potent inhibitory effect against L. monocytogenes. Scanning electron microscopy (SEM) showed that BC-L exerts its bactericidal activity by forming pores on the bacterial cell wall. Despite the BC-L antibacterial mechanism, which involves pore formation, the mammalian cell viability remained unaffected by the BC-L film. The measurement results of zeta potential indicated that the properties of BC changed after being loaded with leucocin. Based on these findings, the anti-listerial BC-L generated through this co-culture system holds promise as a novel effective antimicrobial agent for applications in meat product preservation and packaging.

2.
Int J Biol Macromol ; 272(Pt 2): 132910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844276

RESUMEN

The development of high-efficiency molecularly imprinted photocatalysts is still challenging due to the lack of hydrophilic and suitable functional monomers. In this work, the bio-sourced lysozyme was developed as the hydrophilic functional monomer, and Cu-doped BiOBr was used as the photocatalysts, to prepare a novel hydrophilic molecularly imprinted lysozyme-BiOBr composite (BiOBr-Cu/LyzMIP) with enhanced visible light utilization. Lysozyme could form a transparent layer to mitigate the light transmission obstruction caused by the surface imprinting layer, making it an ideal functional monomer. The prepared BiOBr-Cu/LyzMIP possessed red-shifted visible-light absorption edge and minor reduction of light absorbance, indicating the enhanced utilization of visible light. Accordingly, BiOBr-Cu/LyzMIP demonstrated excellent degradation rate (99.4 % in 20 min), exceptional degradation efficiency (0.211 min-1), and superior reusability. Moreover, BiOBr-Cu/LyzMIP exhibited rapid adsorption equilibrium (20 min), good imprinting factor (2.67), and favourable degradation selectivity (>1.75), indicating the good imprinting effect resulting from abundant functional groups of lysozyme. Versatility experiments on different templates suggested that the proposed approach allowed flexibility in selecting a wide range of hazardous contaminants according to practical requirements. The present work expands the application of lysozyme-based composites in the environmental field, and provides a new one-stop pathway for efficient and sustainable treatment of contaminated water.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Luz , Impresión Molecular , Muramidasa , Contaminantes Químicos del Agua , Purificación del Agua , Muramidasa/química , Contaminantes Químicos del Agua/química , Impresión Molecular/métodos , Purificación del Agua/métodos , Adsorción , Cobre/química , Catálisis
3.
Drug Deliv Transl Res ; 14(8): 2203-2215, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38802679

RESUMEN

This study explores the efficacy of human serum albumin (HSA)-based Drug-Free Macromolecular Therapeutics (DFMT) in treating Chronic Lymphocytic Leukemia (CLL), a prevalent adult leukemia subtype. DFMT, a novel strategy, employs biomimetic crosslinking of CD20 and CD38 receptors on malignant B cells without the need for low molecular weight drugs. Apoptosis is initiated via a two-step process: i) Recognition of a bispecific engager, Fab' fragment conjugated with morpholino oligonucleotide (Fab'-MORF1), by a cell surface antigen; followed by ii) crosslinking of the MORF1-decorated cells with a multivalent effector, HSA holding multiple copies of complementary MORF2, HSA-(MORF2)x. Herein we evaluated the efficacy of HSA-based DFMT in the treatment of 56 samples isolated from patients diagnosed with CLL. Fab' fragments from Obinutuzumab (OBN) and Isatuximab (ISA) were employed in the synthesis of anti-CD20 (Fab'OBN-MORF1) and anti-CD38 (Fab'ISA-MORF1) bispecific engagers. The efficacy of DFMT was significantly influenced by the expression levels of CD20 and CD38 receptors. Dual-targeting DFMT strategies (CD20 + CD38) were more effective than single-target approaches, particularly in samples with elevated receptor expression. Pretreatment of patient cells with gemcitabine or ricolinostat markedly increased cell surface CD20 and CD38 expression, respectively. Apoptosis was effectively initiated in 62.5% of CD20-targeted samples and in 42.9% of CD38-targeted samples. Our findings demonstrate DFMT's potential in personalized CLL therapy. Further research is needed to validate these outcomes in a larger number of patient samples and to explore DFMT's applicability to other malignancies.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Anticuerpos Monoclonales Humanizados , Antígenos CD20 , Apoptosis , Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Albúmina Sérica Humana/química , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Fragmentos Fab de Inmunoglobulinas/farmacología , Fragmentos Fab de Inmunoglobulinas/química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Reactivos de Enlaces Cruzados/química , Glicoproteínas de Membrana
4.
Dig Dis Sci ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769225

RESUMEN

Claudin18.2 is a tight junction protein, highly selective, generally expressed only in normal gastric mucosal epithelial cells, which can effectively maintain the polarity of epithelial and endothelial cells, thus effectively regulating the permeability and conductance of the paracellular pathway. Abnormal expression of Claudin18.2 can occur in various primary malignant tumors, especially gastrointestinal tumors, and even in metastatic foci. It regulates its expression by activating the aPKC/MAPK/AP-1 pathway, and therefore, the Claudin18.2 protein is a pan-cancer target expressed in primary and metastatic lesions in human cancer types. Zolbetuximab (IMAB362), an antibody specific for Claudin18.2, has been successfully tested in a phase III clinical trial, and the results of the study showed that combining Zolbetuximab with chemotherapy notably extends patients' survival and is expected to be a potential first-line treatment for patients with Claudin18.2(+)/HER-2(-) gastric cancer. Here, we systematically describe the biological properties and oncogenic effects of Claudin18.2, centering on its clinical-pathological aspects and the progress of drug studies in gastric cancer, which can help to further explore its clinical value.

5.
Mar Drugs ; 22(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786623

RESUMEN

Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen-host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen-host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library's efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections.


Asunto(s)
Heparina , Mycoplasma pneumoniae , Polisacáridos , Mycoplasma pneumoniae/efectos de los fármacos , Heparina/farmacología , Heparina/química , Polisacáridos/farmacología , Polisacáridos/química , Organismos Acuáticos , Humanos , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Neumonía por Mycoplasma/tratamiento farmacológico , Neumonía por Mycoplasma/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Interacciones Huésped-Patógeno , Sulfatos/química , Sulfatos/farmacología
6.
Viruses ; 16(2)2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38400013

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus with high contagion and mortality rates. Heparan sulfate proteoglycans (HSPGs) are ubiquitously expressed on the surface of mammalian cells. Owing to its high negatively charged property, heparan sulfate (HS) on the surface of host cells is used by many viruses as cofactor to facilitate viral attachment and initiate cellular entry. Therefore, inhibition of the interaction between viruses and HS could be a promising target to inhibit viral infection. In the current study, the interaction between the receptor-binding domain (RBD) of MERS-CoV and heparin was exploited to assess the inhibitory activity of various sulfated glycans such as glycosaminoglycans, marine-sourced glycans (sulfated fucans, fucosylated chondroitin sulfates, fucoidans, and rhamnan sulfate), pentosan polysulfate, and mucopolysaccharide using Surface Plasmon Resonance. We believe this study provides valuable insights for the development of sulfated glycan-based inhibitors as potential antiviral agents.


Asunto(s)
Heparina , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Heparina/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Sulfatos/química , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Mamíferos
7.
J Am Chem Soc ; 146(3): 1926-1934, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38193748

RESUMEN

Dielectric capacitors are highly desired in modern electronic devices and power systems to store and recycle electric energy. However, achieving simultaneous high energy density and efficiency remains a challenge. Here, guided by theoretical and phase-field simulations, we are able to achieve a superior comprehensive property of ultrahigh efficiency of 90-94% and high energy density of 85-90 J cm-3 remarkably in strontium titanate (SrTiO3), a linear dielectric of a simple chemical composition, by manipulating local symmetry breaking through introducing Ti/O defects. Atomic-scale characterizations confirm that these Ti/O defects lead to local symmetry breaking and local lattice strains, thus leading to the formation of the isolated ultrafine polar nanoclusters with varying sizes from 2 to 8 nm. These nanoclusters account for both considerable dielectric polarization and negligible polarization hysteresis. The present study opens a new realm of designing high-performance dielectric capacitors utilizing a large family of readily available linear dielectrics with very simple chemistry.

8.
Macromol Biosci ; 24(3): e2300375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37838941

RESUMEN

Drug-free macromolecular therapeutics (DFMT) utilizes modified monoclonal antibodies (or antibody fragments) to generate antigen-crosslinking-induced apoptosis in target cells. DFMT is a two-component system containing a morpholino oligonucleotide (MORF1) modified antibody (Ab-MORF1) and human serum albumin conjugated with multiple copies of complementary morpholino oligonucleotide (MORF2), (HSA-(MORF2)x ). The two components recognize each other via the Watson-Crick base pairing complementation of their respective MORFs. One HSA-(MORF2)x molecule can hybridize with multiple Ab-MORF1 molecules on the cell surface, thus serving as the therapeutic crosslink-inducing mechanism of action. Herein, various anti-neoplastic agents in combination with the anti-CD20 Obinutuzumab (OBN)-based DFMT system are examined. Three different classes of chemotherapies are examined: DNA alkylating agents; proliferation pathway inhibitors; and DNA replication inhibitors. Chou-Talalay combination index mathematics is utilized to determine which drugs engaged synergistically with OBN-based DFMT. It is determined that OBN-based DFMT synergizes with topoisomerase inhibitors and DNA nucleotide analogs but is antagonistic with proliferation pathway inhibitors. Cell mechanism experiments are performed to analyze points of synergism or antagonism by investigating Ca2+ influx, mitochondrial health, lysosomal stability, and cell cycle arrest. Finally, the synergistic drug combinatorial effects of OBN-based DFMT with etoposide in vivo are demonstrated using a human xenograft non-Hodgkin's lymphoma mouse model.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa , Humanos , Animales , Ratones , Antígenos CD20/genética , Morfolinos , Anticuerpos Monoclonales Humanizados/farmacología , Sustancias Macromoleculares , ADN
9.
J Control Release ; 358: 232-258, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37121515

RESUMEN

The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Linfocitos B
10.
ACS Sens ; 8(3): 956-973, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36892106

RESUMEN

Cardiovascular disease (CVD) causes significant mortality and remains the leading cause of death globally. Thus, to reduce mortality, early diagnosis by measurement of cardiac biomarkers and heartbeat signals presents fundamental importance. Traditional CVD examination requires bulky hospital instruments to conduct electrocardiography recording and immunoassay analysis, which are both time-consuming and inconvenient. Recently, development of biosensing technologies for rapid CVD marker screening attracted great attention. Thanks to the advancement in nanotechnology and bioelectronics, novel biosensor platforms are developed to achieve rapid detection, accurate quantification, and continuous monitoring throughout disease progression. A variety of sensing methodologies using chemical, electrochemical, optical, and electromechanical means are explored. This review first discusses the prevalence and common categories of CVD. Then, heartbeat signals and cardiac blood-based biomarkers that are widely employed in clinic, as well as their utilizations for disease prognosis, are summarized. Emerging CVD wearable and implantable biosensors and monitoring bioelectronics, allowing these cardiac markers to be continuously measured are introduced. Finally, comparisons of the pros and cons of these biosensing devices along with perspectives on future CVD biosensor research are presented.


Asunto(s)
Técnicas Biosensibles , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Técnicas Biosensibles/métodos , Pronóstico , Nanotecnología , Biomarcadores/análisis
11.
Curr Biol ; 33(4): 720-726.e2, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36796358

RESUMEN

Plants can move in various complex ways in response to external stimuli.1,2 These mechanisms include responses to environmental triggers, such as tropic responses to light or gravity and nastic responses to humidity or contact.3 Nyctinasty, the movements involving circadian rhythmic folding at night and opening at daytime of plant leaves or leaflets, has attracted the attention of scientists and the public for centuries.4,5 In his canonical work entitled The Power of Movement in Plants, Charles Darwin carried out pioneering observations to document the diverse range of movements in plants.6 His systematic examination of plants showing "sleep [folding] movements of leaves" led him to conclude that the legume family (Fabaceae) includes many more nyctinastic species than all other families combined.3 Darwin also found that a specialized motor organ, the pulvinus, is responsible for most sleep movements of plant leaves, although differential cell division and the hydrolysis of glycosides and phyllanthurinolactone also facilitate nyctinasty in some plants.7,8 However, the origin, evolutionary history, and functional benefits of foliar sleep movements remain ambiguous owing to the lack of fossil evidence for this process. Here, we document the first fossil evidence of foliar nyctinasty based on a symmetrical style of insect feeding damage (Folifenestra symmetrica isp. nov.) in gigantopterid seed-plant leaves from the upper Permian (∼259-252 Ma) of China. The pattern of insect damage indicates that the host leaves were attacked when mature but folded. Our finding reveals that foliar nyctinasty extends back to the late Paleozoic and evolved independently among various plant lineages.


Asunto(s)
Fabaceae , Fósiles , Humanos , Herbivoria , Hojas de la Planta/fisiología , Plantas , Ritmo Circadiano/fisiología , Fabaceae/fisiología
12.
ACS Appl Mater Interfaces ; 15(1): 2313-2318, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36534513

RESUMEN

Domain walls (DWs) in ferroelectric materials are interfaces that separate domains with different polarizations. Charged domain walls (CDWs) and neutral domain walls are commonly classified depending on the charge state at the DWs. CDWs are particularly attractive as they are configurable elements, which can enhance field susceptibility and enable functionalities such as conductance control. However, it is difficult to achieve CDWs in practice. Here, we demonstrate that applying mechanical stress is a robust and reproducible approach to generate CDWs. By mechanical compression, CDWs with a head/tail-to-body configuration were introduced in ultrathin BaTiO3, which was revealed by in-situ transmission electron microscopy. Finite element analysis shows strong strain fluctuation in ultrathin BaTiO3 under compressive mechanical stress. Molecular dynamics simulations suggest that the strain fluctuation is a critical factor in forming CDWs. This study provides insight into ferroelectric DWs and opens a pathway to creating CDWs in ferroelectric materials.

13.
J Fungi (Basel) ; 10(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248935

RESUMEN

Hydrophobins (HFBs) are a group of small, secreted amphipathic proteins of fungi with multiple physiological functions and potential commercial applications. In this study, HFB genes of the edible mushroom, Grifola frondosa, were systematically identified and characterized, and their transcriptional profiles during fungal development were determined. In total, 19 typical class I HFB genes were discovered and bioinformatically analyzed. Gene expression profile examination showed that Gf.hyd9954 was particularly highly upregulated during primordia formation, suggesting its major role as the predominant HFB in the lifecycle of G. frondosa. The wettability alteration profile and the surface modification ability of recombinant rGf.hyd9954 were greater than for the Grifola HFB HGFII-his. rGf.hyd9954 was also demonstrated to form the typical class I HFB characteristic-rodlet bundles. In addition, rGf.hyd9954 was shown to possess nanoparticle characteristics and emulsification activities. This research sheds light on the regulation of fungal development and its association with the expression of HFB genes.

14.
J Agric Food Chem ; 70(49): 15464-15473, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36454954

RESUMEN

Curcumin, a polyphenol derived from turmeric, has multiple biological functions, such as anti-inflammatory, antioxidant, antibacterial and, above all, antitumor activity. Colorectal cancer is a common malignancy of the gastrointestinal tract with an extremely high mortality rate. However, the low bioavailability and poor targeting properties of curcumin generally limit its clinical application. In the present study, we designed a fusion protein GE11-HGFI as a nanodrug delivery system. The protein was connected by flexible linkers, inheriting the self-assembly properties of hydrophobin HGFI and the targeting ability of GE11. The data show that the encapsulation of curcumin by fusion protein GE11-HGFI can form uniform and stable nanoparticles with a size of only 80 nm. In addition, the nanocarrier had high encapsulation efficiency for curcumin and made it to release sustainably. Notably, the drug-loaded nanosystem selectively targeted colorectal cancer cells with high epidermal growth factor receptor expression, resulting in high aggregated concentrations of curcumin at tumor sites, thus showing a significant anticancer effect. These results suggest that the nanocarrier fusion protein has the potential to be a novel strategy for enhancing molecular bioactivity and drug targeting in cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Curcumina , Nanopartículas , Humanos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Receptores ErbB/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
15.
Biomed Res Int ; 2022: 6087751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212709

RESUMEN

Tumor immunotherapy is considered as one of the most promising methods in cancer treatment in recent years. Immune checkpoint blockade (ICB) can activate immune cells to destroy tumors by relieving the inhibitory pathway of tumor cells to immune cells. In silico prediction of the ICB response is an important step toward achieving effective and personalized cancer immunotherapy. Although immune checkpoint inhibitors have shown exciting clinical effects in the treatment of many types of tumors, there are still some clinical problems in practical application, such as low response rate and large individualized differences. How to predict the efficacy of effective individualized immune checkpoint inhibitors for tumor patients based on specific biomarkers and computational models is one of the key issues in the immunotherapy of this kind of tumor. In our work, from the five levels of genome level, transcription level, epigenetic level, microbial taxonomy level, and the immune cell infiltration profile level, the biomarkers and in silico calculation methods that affect the efficacy of tumor immune checkpoint inhibitors are comprehensively summarized.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Biomarcadores , Biomarcadores de Tumor , Biología Computacional , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Microambiente Tumoral
16.
Genes (Basel) ; 13(9)2022 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-36140800

RESUMEN

Nitrogen (N) is one of the most important factors affecting crop production. Root morphology exhibits a high degree of plasticity to nitrogen deficiency. However, the mechanisms underlying the root foraging response under low-N conditions remain poorly understood. In this study, we analyzed 213 maize inbred lines using hydroponic systems and regarding their natural variations in 22 root traits and 6 shoot traits under normal (2 mM nitrate) and low-N (0 mM nitrate) conditions. Substantial phenotypic variations were detected for all traits. N deficiency increased the root length and decreased the root diameter and shoot related traits. A total of 297 significant marker-trait associations were identified by a genome-wide association study involving different N levels and the N response value. A total of 51 candidate genes with amino acid variations in coding regions or differentially expressed under low nitrogen conditions were identified. Furthermore, a candidate gene ZmNAC36 was resequenced in all tested lines. A total of 38 single nucleotide polymorphisms and 12 insertions and deletions were significantly associated with lateral root length of primary root, primary root length between 0 and 0.5 mm in diameter, primary root surface area, and total length of primary root under a low-N condition. These findings help us to improve our understanding of the genetic mechanism of root plasticity to N deficiency, and the identified loci and candidate genes will be useful for the genetic improvement of maize tolerance cultivars to N deficiency.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Aminoácidos/genética , Perfilación de la Expresión Génica , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Plantones/genética
17.
Cancer Manag Res ; 14: 2469-2483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991677

RESUMEN

Radiation pneumonitis is a common and serious complication of radiotherapy for thoracic tumours. Although radiotherapy technology is constantly improving, the incidence of radiation pneumonitis is still not low, and severe cases can be life-threatening. Once radiation pneumonitis develops into radiation fibrosis (RF), it will have irreversible consequences, so it is particularly important to prevent the occurrence and development of radiation pneumonitis. Immune checkpoint inhibitors (ICIs) have rapidly altered the treatment landscape for multiple tumour types, providing unprecedented survival in some patients, especially for the treatment of non-small cell lung cancer (NSCLC). However, in addition to its remarkable curative effect, ICls may cause immune-related adverse events. The incidence of checkpoint inhibitor pneumonitis (CIP) is 3% to 5%, and its mortality rate is 10% to 17%. In addition, the incidence of CIP in NSCLC is higher than in other tumour types, reaching 7%-13%. With the increasing use of immune checkpoint inhibitors (ICls) and thoracic radiotherapy in the treatment of patients with NSCLC, ICIs may induce delayed radiation pneumonitis in patients previously treated with radiation therapy, or radiation activation of the systemic immune system increases the toxicity of adverse reactions, which may lead to increased pulmonary toxicity and the incidence of pneumonitis. In this paper, the data about the occurrence of radiation pneumonitis, immune pneumonitis, and combined treatment and the latest related research results will be reviewed.

18.
J Control Release ; 350: 584-599, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037975

RESUMEN

Drug-Free Macromolecular Therapeutics (DFMT) is a new paradigm in macromolecular therapeutics that induces apoptosis in target cells by crosslinking receptors without the need of low molecular weight drugs. Programmed cell death is initiated via a biomimetic receptor crosslinking strategy using a two-step approach: i) recognition of cell surface antigen by a morpholino oligonucleotide-modified antibody Fab' fragment (Fab'-MORF1), ii) followed by crosslinking with a multivalent effector motif - human serum albumin (HSA) grafted with multiple complementary morpholino oligonucleotides (HSA-(MORF2)x). This approach is effective in vitro, in vivo, and ex vivo on cells from patients diagnosed with various B cell malignancies. We have previously demonstrated DFMT can be applied to crosslink CD20 and CD38 receptors to successfully initiate apoptosis. Herein, we show simultaneous engagement, and subsequent crosslinking of both targets ("heteroreceptor crosslinking"), can further enhance the apoptosis induction capacity of this system. To accomplish this, we incubated Raji (CD20+; CD38+) cells simultaneously with anti-CD20 and anti-CD38 Fab'-MORF1 conjugates, followed by addition of the macromolecular crosslinker, HSA-(MORF2)x to co-cluster the bound receptors. Fab' fragments from Rituximab and Obinutuzumab were employed in the synthesis of anti-CD20 bispecific engagers (Fab'RTX-MORF1 and Fab'OBN-MORF1), whereas Fab' fragments from Daratumumab and Isatuximab (Fab'DARA-MORF1 and Fab'ISA-MORF1) targeted CD38. All heteroreceptor crosslinking DFMT combinations demonstrated potent apoptosis induction and exhibited synergistic effects as determined by Chou-Talalay combination index studies (CI < 1). In vitro fluorescence resonance energy transfer (FRET) experiments confirmed the co-clustering of the two receptors on the cell surface in response to the combination treatment. The source of this synergistic therapeutic effect was further explored by evaluating the effect of combination DFMT on key apoptosis signaling events such as mitochondrial depolarization, caspase activation, lysosomal enlargement, and homotypic cell adhesion. Finally, a xenograft mouse model of CD20+/CD38+ Non Hodgkin lymphoma was employed to demonstrate in vivo the enhanced efficacy of the heteroreceptor-crosslinking DFMT design versus single-target systems.


Asunto(s)
Antígenos CD20 , Apoptosis , Animales , Caspasas/farmacología , Humanos , Fragmentos Fab de Inmunoglobulinas , Sustancias Macromoleculares , Ratones , Morfolinos , Rituximab/farmacología , Albúmina Sérica Humana
19.
Acta Biochim Biophys Sin (Shanghai) ; 54(6): 864-873, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35713313

RESUMEN

High-throughput sequencing for B cell receptor (BCR) repertoire provides useful insights for the adaptive immune system. With the continuous development of the BCR-seq technology, many efforts have been made to develop methods for analyzing the ever-increasing BCR repertoire data. In this review, we comprehensively outline different BCR repertoire library preparation protocols and summarize three major steps of BCR-seq data analysis, i. e., V(D)J sequence annotation, clonal phylogenetic inference, and BCR repertoire profiling and mining. Different from other reviews in this field, we emphasize background intuition and the statistical principle of each method to help biologists better understand it. Finally, we discuss data mining problems for BCR-seq data and with a highlight on recently emerging multiple-sample analysis.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Receptores de Antígenos de Linfocitos B , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Receptores de Antígenos de Linfocitos B/genética
20.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35590899

RESUMEN

The research of object classification and part segmentation is a hot topic in computer vision, robotics, and virtual reality. With the emergence of depth cameras, point clouds have become easier to collect and increasingly important because of their simple and unified structures. Recently, a considerable number of studies have been carried out about deep learning on 3D point clouds. However, data captured directly by sensors from the real-world often encounters severe incomplete sampling problems. The classical network is able to learn deep point set features efficiently, but it is not robust enough when the method suffers from the lack of point clouds. In this work, a novel and general network was proposed, whose effect does not depend on a large amount of point cloud input data. The mutual learning of neighboring points and the fusion between high and low feature layers can better promote the integration of local features so that the network can be more robust. The specific experiments were conducted on the ScanNet and Modelnet40 datasets with 84.5% and 92.8% accuracy, respectively, which proved that our model is comparable or even better than most existing methods for classification and segmentation tasks, and has good local feature integration ability. Particularly, it can still maintain 87.4% accuracy when the number of input points is further reduced to 128. The model proposed has bridged the gap between classical networks and point cloud processing.


Asunto(s)
Robótica , Realidad Virtual , Nube Computacional , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...